ﻻ يوجد ملخص باللغة العربية
[Devito] is an open-source Python project based on domain-specific language and compiler technology. Driven by the requirements of rapid HPC applications development in exploration seismology, the language and compiler have evolved significantly since inception. Sophisticated boundary conditions, tensor contractions, sparse operations and features such as staggered grids and sub-domains are all supported; operators of essentially arbitrary complexity can be generated. To accommodate this flexibility whilst ensuring performance, data dependency analysis is utilized to schedule loops and detect computational-properties such as parallelism. In this article, the generation and simulation of MPI-parallel propagators (along with their adjoints) for the pseudo-acoustic wave-equation in tilted transverse isotropic media and the elastic wave-equation are presented. Simulations are carried out on industry scale synthetic models in a HPC Cloud system and reach a performance of 28TFLOP/s, hence demonstrating Devitos suitability for production-grade seismic inversion problems.
Seismic wave propagation forms the basis for most aspects of seismological research, yet solving the wave equation is a major computational burden that inhibits the progress of research. This is exaspirated by the fact that new simulations must be pe
The development of physical simulators, called Ising machines, that sample from low energy states of the Ising Hamiltonian has the potential to drastically transform our ability to understand and control complex systems. However, most of the physical
We describe the development of a scientific cloud computing (SCC) platform that offers high performance computation capability. The platform consists of a scientific virtual machine prototype containing a UNIX operating system and several materials s
New hardware architectures open up immense opportunities for supercomputer simulations. However, programming techniques for different architectures vary significantly, which leads to the necessity of developing and supporting multiple co
Inversion and PDE-constrained optimization problems often rely on solving the adjoint problem to calculate the gradient of the objec- tive function. This requires storing large amounts of intermediate data, setting a limit to the largest problem that