ترغب بنشر مسار تعليمي؟ اضغط هنا

High-level python abstractions for optimal checkpointing in inversion problems

144   0   0.0 ( 0 )
 نشر من قبل Navjot Kukreja
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Inversion and PDE-constrained optimization problems often rely on solving the adjoint problem to calculate the gradient of the objec- tive function. This requires storing large amounts of intermediate data, setting a limit to the largest problem that might be solved with a given amount of memory available. Checkpointing is an approach that can reduce the amount of memory required by redoing parts of the computation instead of storing intermediate results. The Revolve checkpointing algorithm o ers an optimal schedule that trades computational cost for smaller memory footprints. Integrat- ing Revolve into a modern python HPC code and combining it with code generation is not straightforward. We present an API that makes checkpointing accessible from a DSL-based code generation environment along with some initial performance gures with a focus on seismic applications.



قيم البحث

اقرأ أيضاً

High-level synthesis (HLS) is a key component for the hardware acceleration of applications, especially thanks to the diffusion of reconfigurable devices in many domains, from data centers to edge devices. HLS reduces development times by allowing de signers to raise the abstraction level and use automated methods for hardware generation. Since security concerns are becoming more and more relevant for data-intensive applications, we investigate how to abstract security properties and use HLS for their integration with the accelerator functionality. We use the case of dynamic information flow tracking, showing how classic software-level abstractions can be efficiently used to hide implementation details to the designers.
SciPy is an open source scientific computing library for the Python programming language. SciPy 1.0 was released in late 2017, about 16 years after the original version 0.1 release. SciPy has become a de facto standard for leveraging scientific algor ithms in the Python programming language, with more than 600 unique code contributors, thousands of dependent packages, over 100,000 dependent repositories, and millions of downloads per year. This includes usage of SciPy in almost half of all machine learning projects on GitHub, and usage by high profile projects including LIGO gravitational wave analysis and creation of the first-ever image of a black hole (M87). The library includes functionality spanning clustering, Fourier transforms, integration, interpolation, file I/O, linear algebra, image processing, orthogonal distance regression, minimization algorithms, signal processing, sparse matrix handling, computational geometry, and statistics. In this work, we provide an overview of the capabilities and development practices of the SciPy library and highlight some recent technical developments.
scikit-image is an image processing library that implements algorithms and utilities for use in research, education and industry applications. It is released under the liberal Modified BSD open source license, provides a well-documented API in the Py thon programming language, and is developed by an active, international team of collaborators. In this paper we highlight the advantages of open source to achieve the goals of the scikit-image library, and we showcase several real-world image processing applications that use scikit-image.
[Devito] is an open-source Python project based on domain-specific language and compiler technology. Driven by the requirements of rapid HPC applications development in exploration seismology, the language and compiler have evolved significantly sinc e inception. Sophisticated boundary conditions, tensor contractions, sparse operations and features such as staggered grids and sub-domains are all supported; operators of essentially arbitrary complexity can be generated. To accommodate this flexibility whilst ensuring performance, data dependency analysis is utilized to schedule loops and detect computational-properties such as parallelism. In this article, the generation and simulation of MPI-parallel propagators (along with their adjoints) for the pseudo-acoustic wave-equation in tilted transverse isotropic media and the elastic wave-equation are presented. Simulations are carried out on industry scale synthetic models in a HPC Cloud system and reach a performance of 28TFLOP/s, hence demonstrating Devitos suitability for production-grade seismic inversion problems.
Seismic inversion and imaging are adjoint-based optimization problems that processes up to terabytes of data, regularly exceeding the memory capacity of available computers. Data compression is an effective strategy to reduce this memory requirement by a certain factor, particularly if some loss in accuracy is acceptable. A popular alternative is checkpointing, where data is stored at selected points in time, and values at other times are recomputed as needed from the last stored state. This allows arbitrarily large adjoint computations with limited memory, at the cost of additional recomputations. In this paper we combine compression and checkpointing for the first time to compute a realistic seismic inversion. The combination of checkpointing and compression allows larger adjoint computations compared to using only compression, and reduces the recomputation overhead significantly compared to using only checkpointing.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا