ﻻ يوجد ملخص باللغة العربية
Bismuth vanadate (BiVO4) has recently been under focus for its potential use in photocatalysis thanks to its well-suited absorption edge in the visible light range. Here, we characterize the optical absorption of a BiVO4 single crystal as a function of temperature and polarization direction by reflectance and transmittance spectroscopy. The optical band gap is found to be very sensitive to temperature, and to the monoclinic-to-tetragonal ferroelastic transition at 523K. The anisotropy, as measured by the difference in absorption edge for light polarized parallel and perpendicular to the principal axis, is reduced from 0.2 eV in the high-temperature tetragonal phase to 0.1 eV at ambient temperature. We show that this evolution is dominantly controlled by the ferroelastic shear strain. These findings provide a route for further optimization of bismuth-vanadate-based light absorbers in photocatalytic devices.
Compared to AgNbO3 based ceramics, the experimental investigations on the single crystalline AgNbO3, especially the ground state and ferroic domain structures, are not on the same level. Here in this work, based on successfully synthesized AgNbO3 sin
Multi-crystalline silicon is widely used for producing low-cost and high-efficiency solar cells. During crystal growth and device fabrication, silicon solar cells contain grain boundaries (GBs) which are preferential segregation sites for atomic impu
The effect of elastic strain on catalytic activity of platinum (Pt) towards oxygen reduction reaction (ORR) is investigated through de-alloyed Pt-Cu thin films; stress evolution in the de-alloyed layer and the mass of the Cu removed are measured in r
Uniaxial and biaxial strain approaches are usually implemented to switch the ferroelastic states, which play a key role in the application of the ferroics and shape memory materials. In this work, by using the first-principles calculations, we found
We report on simulations and measurements of the optical absorption of silicon nanowires (NWs) versus their diameter. We first address the simulation of the optical absorption based on two different theoretical methods : the first one, based on the G