ﻻ يوجد ملخص باللغة العربية
Uniaxial and biaxial strain approaches are usually implemented to switch the ferroelastic states, which play a key role in the application of the ferroics and shape memory materials. In this work, by using the first-principles calculations, we found not only uniaxial strain, but also shear strain can induce a novel ferroelastic switching, in which the van der Waals (vdW) layered direction rotates with the ferroelastic transition in layered bulk PdSe2. The shear strain induces ferroelastic switching with three times amplitude smaller than uniaxial strain. The novel three-states ferroelastic switching in layered PdSe2 also occurs under shear strain. Our result shows that the shear strain could be used as an effective approach for manipulating the functionalities of layered materials in potential device applications.
Pnictogens have multiple allotropic forms resulting from their ns2 np3 valence electronic configuration, making them the only elemental materials to crystallize in layered van der Waals (vdW) and quasi-vdW structures throughout the group. Light group
Magnetic van der Waals (vdW) materials have been heavily pursued for fundamental physics as well as for device design. Despite the rapid advances, so far magnetic vdW materials are mainly insulating or semiconducting, and none of them possesses a hig
The discovery of new families of exfoliatable 2D crystals that have diverse sets of electronic, optical, and spin-orbit coupling properties, enables the realization of unique physical phenomena in these few-atom thick building blocks and in proximity
The bulk piezoelectric response, as measured by the piezoelectric modulus tensor (textbf{d}), is determined by a combination of charge redistribution due to strain and the amount of strain produced by the application of stress (stiffness). Motivated
In this work, we reported the observation of a novel planar topological Hall effect (PTHE) in single crystal of Fe3GeTe2, a paradigmatic two-dimensional ferromagnet with strong uniaxial anisotropy. The Hall effect and magnetoresistance varied periodi