ﻻ يوجد ملخص باللغة العربية
A map $X$ on a surface is called vertex-transitive if the automorphism group of $X$ acts transitively on the set of vertices of $X$. If the face-cycles at all the vertices in a map are of same type then the map is called semi-equivelar. In general, semi-equivelar maps on a surface form a bigger class than vertex-transitive maps. There are semi-equivelar toroidal maps which are not vertex-transitive. In this article, we show that semi-equivelar toroidal maps are quotients of vertex-transitive toroidal maps. More explicitly, we prove that each semi-equivelar toroidal map has a finite vertex-transitive cover. In 2019, Drach {em et al.} have shown that each vertex-transitive toroidal map has a minimal almost regular cover. Therefore, semi-equivelar toroidal maps are quotients of almost regular toroidal maps.
A vertex-transitive map $X$ is a map on a closed surface on which the automorphism group ${rm Aut}(X)$ acts transitively on the set of vertices. If the face-cycles at all the vertices in a map are of same type then the map is said to be a semi-equive
If the face-cycles at all the vertices in a map on a surface are of same type then the map is called semi-equivelar. There are eleven types of Archimedean tilings on the plane. All the Archimedean tilings are semi-equivelar maps. If a map $X$ on the
A vertex-transitive map $X$ is a map on a surface on which the automorphism group of $X$ acts transitively on the set of vertices of $X$. If the face-cycles at all the vertices in a map are of same type then the map is called a semi-equivelar map. Cl
We introduce the notion of a symmetric basis of a vector space equipped with a quadratic form, and provide a sufficient and necessary condition for the existence to such a basis. Symmetric bases are then used to study Cayley graphs of certain extrasp
We generalise the standard constructions of a Cayley graph in terms of a group presentation by allowing some vertices to obey different relators than others. The resulting notion of presentation allows us to represent every vertex transitive graph. A