ترغب بنشر مسار تعليمي؟ اضغط هنا

Constructing 2-Arc-Transitive Covers of Hypercubes

110   0   0.0 ( 0 )
 نشر من قبل Yian Xu
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We introduce the notion of a symmetric basis of a vector space equipped with a quadratic form, and provide a sufficient and necessary condition for the existence to such a basis. Symmetric bases are then used to study Cayley graphs of certain extraspecial 2-groups of order 2^{2r+1} (rgeq 1), which are further shown to be normal Cayley graphs and 2-arc-transitive covers of 2r-dimensional hypercubes.



قيم البحث

اقرأ أيضاً

A detailed description of the structure of two-ended arc-transitive digraphs is given. It is also shown that several sets of conditions, involving such concepts as Property Z, local quasi-primitivity and prime out-valency, imply that an arc-transitiv e digraph must be highly-arc-transitive. These are then applied to give a complete classification of two-ended highly-arc-transitive digraphs with prime in- and out-valencies.
80 - Zaiping Lu 2018
A graph is edge-primitive if its automorphism group acts primitively on the edge set. In this short paper, we prove that a finite 2-arc-transitive edge-primitive graph has almost simple automorphism group if it is neither a cycle nor a complete bipar tite graph. We also present two examples of such graphs, which are 3-arc-transitive and have faithful vertex-stabilizers.
The balanced hypercube $BH_{n}$, proposed by Wu and Huang, is a variation of the hypercube. The paired 1-disjoint path cover of $BH_{n}$ is the Hamiltonian laceability, which was obtained by Xu et al. in [Appl. Math. Comput. 189 (2007) 1393--1401]. T he paired 2-disjoint path cover of $BH_{n}$ was obtained by Cheng et al. in [Appl. Math. and Comput. 242 (2014) 127-142]. In this paper, we obtain the paired 3-disjoint path cover of $BH_{n}$ with $ngeq 3$. This result improves the above known results about the paired $k$-disjoint path covers of $BH_{n}$ for $k=1,2$.
133 - Nikolaus Witte 2008
Branched covers are applied frequently in topology - most prominently in the construction of closed oriented PL d-manifolds. In particular, strong bounds for the number of sheets and the topology of the branching set are known for dimension d<=4. On the other hand, Izmestiev and Joswig described how to obtain a simplicial covering space (the partial unfolding) of a given simplicial complex, thus obtaining a simplicial branched cover [Adv. Geom. 3(2):191-255, 2003]. We present a large class of branched covers which can be constructed via the partial unfolding. In particular, for d<=4 every closed oriented PL d-manifold is the partial unfolding of some polytopal d-sphere.
103 - Basudeb Datta 2020
A map $X$ on a surface is called vertex-transitive if the automorphism group of $X$ acts transitively on the set of vertices of $X$. If the face-cycles at all the vertices in a map are of same type then the map is called semi-equivelar. In general, s emi-equivelar maps on a surface form a bigger class than vertex-transitive maps. There are semi-equivelar toroidal maps which are not vertex-transitive. In this article, we show that semi-equivelar toroidal maps are quotients of vertex-transitive toroidal maps. More explicitly, we prove that each semi-equivelar toroidal map has a finite vertex-transitive cover. In 2019, Drach {em et al.} have shown that each vertex-transitive toroidal map has a minimal almost regular cover. Therefore, semi-equivelar toroidal maps are quotients of almost regular toroidal maps.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا