ﻻ يوجد ملخص باللغة العربية
X-ray luminosity ($L_X$) originating from high-mass X-ray binaries (HMXBs) is tightly correlated with the host galaxys star-formation rate (SFR). We explore this connection at sub-galactic scales spanning ${sim}$7 dex in SFR and ${sim}$8 dex in specific SFR (sSFR). There is good agreement with established relations down to ${rm SFR {simeq} 10^{-3},M_odot , yr^{-1}}$, below which an excess of X-ray luminosity emerges. This excess likely arises from low mass X-ray binaries. The intrinsic scatter of the $L_X$-SFR relation is constant, not correlated with SFR. Different star formation indicators scale with $L_X$ in different ways, and we attribute the differences to the effect of star formation history. The SFR derived from H$alpha$ shows the tightest correlation with X-ray luminosity because H$alpha$ emission probes stellar populations with ages similar to HMXB formation timescales, but the H$alpha$-based SFR is reliable only for $rm sSFR{>}10^{-12},M_odot , yr^{-1}/M_odot$.
We investigate the scaling relations between the X-ray and the thermal Sunyaev-Zeldovich Effect (SZE) properties of clusters of galaxies, using data taken during 2007 by the Y.T. Lee Array for Microwave Background Anisotropy (AMiBA) at 94 GHz for the
In this study we investigate the relationship between the star formation rate, SFR, and AGN luminosity, L(AGN), for ~2000 X-ray detected AGN. The AGN span over three orders of magnitude in X-ray luminosity (10^(42) < L(2-8keV) < 10^(45.5) erg/s) and
We combine molecular gas masses inferred from CO emission in 500 star forming galaxies (SFGs) between z=0 and 3, from the IRAM-COLDGASS, PHIBSS1/2 and other surveys, with gas masses derived from Herschel far-IR dust measurements in 512 galaxy stacks
We investigate X-ray binary (XRB) luminosity function (XLF) scaling relations for Chandra detected populations of low-mass XRBs (LMXBs) within the footprints of 24 early-type galaxies. Our sample includes Chandra and HST observed galaxies at D < 25 M
We have measured the relationships between HI mass, stellar mass and star formation rate using the HI Parkes All Sky-Survey Catalogue (HICAT) and the Wide-field Infrared Survey Explorer (WISE). Of the 3,513 HICAT sources, we find 3.4 micron counterpa