ﻻ يوجد ملخص باللغة العربية
In this study we investigate the relationship between the star formation rate, SFR, and AGN luminosity, L(AGN), for ~2000 X-ray detected AGN. The AGN span over three orders of magnitude in X-ray luminosity (10^(42) < L(2-8keV) < 10^(45.5) erg/s) and are in the redshift range z = 0.2 - 2.5. Using infrared (IR) photometry (8 - 500um), including deblended Spitzer and Herschel images and taking into account photometric upper limits, we decompose the IR spectral energy distributions into AGN and star formation components. Using the IR luminosities due to star formation, we investigate the average SFRs as a function of redshift and AGN luminosity. In agreement with previous studies, we find a strong evolution of the average SFR with redshift, tracking the observed evolution of the overall star forming galaxy population. However, we find that the relationship between the average SFR and AGN luminosity is flat at all redshifts and across all the AGN luminosities investigated; in comparison to previous studies, we find less scatter amongst the average SFRs across the wide range of AGN luminosities investigated. By comparing to empirical models, we argue that the observed flat relationship is due to short timescale variations in AGN luminosity, driven by changes in the mass accretion rate, which wash out any underlying correlations between SFR and L(AGN). Furthermore, we show that the exact form of the predicted relationship between SFR and AGN luminosity (and its normalisation) is highly sensitive to the assumed intrinsic Eddington ratio distribution.
We present the star formation rates (SFRs) of a sample of 109 galaxies with X-ray selected active galactic nuclei (AGN) with moderate to high X-ray luminosities (L(2-8keV)= 10^42-10^45 erg/s), at redshifts 1 < z < 4.7, that were selected to be faint
The lack of a strong correlation between AGN X-ray luminosity ($L_X$; a proxy for AGN power) and the star formation rate (SFR) of their host galaxies has recently been attributed to stochastic AGN variability. Studies using population synthesis model
We study the evidence for a connection between active galactic nuclei (AGN) fueling and star formation by investigating the relationship between the X-ray luminosities of AGN and the star formation rates (SFRs) of their host galaxies. We identify a s
Understanding infrared (IR) luminosity is fundamental to understanding the cosmic star formation history and AGN evolution, since their most intense stages are often obscured by dust. Japanese infrared satellite, AKARI, provided unique data sets to p
At low Eddington ratio (mdot), two effects make it harder to detect AGN given some selection criteria. First, even with fixed accretion physics, AGN are diluted/less luminous relative to their hosts; the magnitude of this depends on host properties a