ﻻ يوجد ملخص باللغة العربية
We consider integer sequences that satisfy a recursion of the form $x_{n+1} = P(x_n)$ for some polynomial $P$ of degree $d > 1$. If such a sequence tends to infinity, then it satisfies an asymptotic formula of the form $x_n sim A alpha^{d^n}$, but little can be said about the constant $alpha$. In this paper, we show that $alpha$ is always irrational or an integer. In fact, we prove a stronger statement: if a sequence $G_n$ satisfies an asymptotic formula of the form $G_n = A alpha^n + B + O(alpha^{-epsilon n})$, where $A,B$ are algebraic and $alpha > 1$, and the sequence contains infinitely many integers, then $alpha$ is irrational or an integer.
We prove that a real number a greater than or equal to 2 is the irrationality exponent of some computable real number if and only if a is the upper limit of a computable sequence of rational numbers. Thus, there are computable real numbers whose irrationality exponent is not computable.
We generalize the classical theorem by Jarnik and Besicovitch on the irrationality exponents of real numbers and Hausdorff dimension. Let a be any real number greater than or equal to 2 and let b be any non-negative real less than or equal to 2/a. We
The profile of a relational structure $R$ is the function $varphi_R$ which counts for every integer $n$ the number, possibly infinite, $varphi_R(n)$ of substructures of $R$ induced on the $n$-element subsets, isomorphic substructures being identified
In this note we show how the irrationality measure of $zeta(s) = pi^2/6$ can be used to obtain explicit lower bounds for $pi(x)$. We analyze the key ingredients of the proof of the finiteness of the irrationality measure, and show how to obtain good
We consider harmonic functions of polynomial growth of some order $d$ on Cayley graphs of groups of polynomial volume growth of order $D$ w.r.t. the word metric and prove the optimal estimate for the dimension of the space of such harmonic functions.