ﻻ يوجد ملخص باللغة العربية
Despite the virtues of Jones and Mueller formalisms for the representation of the polarimetric properties, for some purposes in both Optics and SAR Polarimetry, the concept of coherency vector associated with a nondepolarizing medium has proven to be an useful mathematical structure that inherits certain symmetries underlying the nature of linear polarimetric transformations of the states of polarization of light caused by its interaction with material media. While the Jones and Mueller matrices of a serial combination of devices are given by the respective conventional matrix products, the composition of coherency vectors of such serial combinations requires a specific and unconventional mathematical rule. In this work, a vector product of coherency vectors is presented that satisfies, in a meaningful and consistent manner, the indicated requirements. As a result, a new algebraic formalism is built where the representation of polarization states of electromagnetic waves through Stokes vectors is preserved, while nondepolarizing media are represented by coherency vectors and general media are represented by coherency matrices generated by partially coherent compositions of the coherency vectors of the components.
The two-point complex coherence function constitutes a complete representation for scalar quasi-monochromatic optical fields. Exploiting dynamically reconfigurable slits implemented with a digital micromirror device, we report on measurements of the
We consider coupled waveguide lattices as an architecture that implement a wide range of multiport transformations. In this architecture, a particular transfer matrix is obtained through setting the step-wise profiles of the propagation constants see
Temporal interfaces introduced by abrupt switching of the constitutive parameters of unbounded media enable unusual wave phenomena. So far, their explorations have been mostly limited to lossless media. Yet, non-Hermitian phenomena leveraging materia
An analysis of the matrix models representing the polarimetric properties of light and material media is carried out by using the concept of the coherency matrix, which leads to the identification and definition of their corresponding physical quanti
Birefringent materials or nanostructures that introduce phase differences between two linear polarizations underpin the operation of wave plates for polarization control of light. Here we develop metasurfaces realizing a distinct class of complex-bir