ترغب بنشر مسار تعليمي؟ اضغط هنا

Complex-birefringent dielectric metasurfaces for arbitrary polarization-pair transformations

114   0   0.0 ( 0 )
 نشر من قبل Andrey A. Sukhorukov
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Birefringent materials or nanostructures that introduce phase differences between two linear polarizations underpin the operation of wave plates for polarization control of light. Here we develop metasurfaces realizing a distinct class of complex-birefringent wave plates, which combine polarization transformation with a judiciously tailored polarization-dependent phase retardance and amplitude filtering via diffraction. We prove that the presence of loss enables the mapping from any chosen generally non-orthogonal pair of polarizations to any other pair at the output. We establish an optimal theoretical design-framework based on pairwise nanoresonator structures and experimentally demonstrate unique properties of metasurfaces in the amplification of small polarization differences and polarization coupling with unconventional phase control. Furthermore, we reveal that these metasurfaces can perform arbitrary transformations of biphoton polarization-encoded quantum states, including the modification of the degree of entanglement. Thereby, such flat devices can facilitate novel types of multi-functional polarization optics for classical and quantum applications.



قيم البحث

اقرأ أيضاً

78 - Yanjun Bao , Ying Yu , Shang Sun 2021
Metasurfaces are planar structures that can manipulate the amplitude, phase and polarization (APP) of light at subwavelength scale. Although various functionalities have been proposed based on metasurface, a most general optical control, i.e., indepe ndent complex-amplitude (amplitude and phase) control of arbitrary two orthogonal states of polarizations, has not yet been realized. Such level of optical control can not only cover the various functionalities realized previously, but also enable new functionalities that are not feasible before. Here, we propose a single-layer dielectric metasurface to realize this goal and experimentally demonstrate several advanced functionalities, such as two independent full-color printing images under arbitrary elliptically orthogonal polarizations and dual sets of printing-hologram integrations. Our work opens the way for a wide range of applications in advanced image display, information encoding, and polarization optics.
Liquid crystals allow for the real-time control of the polarization of light. We describe and provide some experimental examples of the types of general polarization transformations, including universal polarization transformations, that can be accom plished with liquid crystals in tandem with fixed waveplates. Implementing these transformations with an array of liquid crystals, e.g., a spatial light modulator, allows for the manipulation of the polarization across a beams transverse plane. We outline applications of such general spatial polarization transformations in the generation of exotic types of vector polarized beams, a polarization magnifier, and the correction of polarization aberrations in light fields.
Polarization light microscopes are powerful tools for probing molecular order and orientation in birefringent materials. While a multitude of polarization light microscopy techniques are often used to access steady-state properties of birefringent sa mples, quantitative measurements of the molecular orientation dynamics on the millisecond time scale have remained a challenge. We propose polarized shearing interference microscopy (PSIM), a single-shot quantitative polarization imaging method, for extracting the retardance and orientation angle of the laser beam transmitting through optically anisotropic specimens with complex structures. The measurement accuracy and imaging performances of PSIM are validated by imaging a rotating wave plate and a bovine tendon specimen. We demonstrate that PSIM can quantify the dynamics of a flowing lyotropic chromonic liquid crystal in a microfluidic channel at an imaging speed of 506 frames per second (only limited by the camera frame rate), with a field-of-view of up to $350times350 mu m^2$ and a diffraction-limit spatial resolution of $sim 2mu m$. We envision that PSIM will find a broad range of applications in quantitative material characterization under dynamical conditions.
The control of polarization, an essential property of light, is of wide scientific and technological interest. Polarizer is an indispensable optical element for direct polarization generations. Except common linear and circular polarizations, however , arbitrary polarization generation heavily resorts to bulky optical components by cascading linear polarizers and waveplates. Here, we present a general strategy for designing all-in-one full Poincare sphere polarizers based on perfect arbitrary polarization conversion dichroism, and realize it in a monolayer all-dielectric metasurface. It allows preferential transmission and conversion of one polarization state locating at an arbitrary position of the Poincare sphere to its handedness-flipped state, while completely blocking its orthogonal state. In contrast to previous work with limited flexibility to only linear or circular polarizations, our method manifests perfect dichroism close to 100% in theory and exceeding 90% in experiments for arbitrary polarization states. Leveraging this tantalizing dichroism, our demonstration of monolithic full Poincare sphere polarization generators directly from unpolarized light can enormously extend the scope of meta-optics and dramatically push the state-of-the-art nanophotonic devices.
Electromagnetic fields coupled with mechanical degrees of freedom have recently shown exceptional and innovative applications, ultimately leading to mesoscopic optomechanical devices operating in the quantum regime of motion. Simultaneously, micromec hanical elements have provided new ways to enhance and manipulate the optical properties of passive photonic elements. Following this concept, in this article we show how combining a chiral metasurface with a GaAs suspended micromembrane can offer new scenarios for controlling the polarization state of near-infrared light beams. Starting from the uncommon properties of chiral metasurface to statically realize target polarization states and circular and linear dichroism, we report mechanically induced, ~300 kHz polarization modulation, which favorably compares, in terms of speed, with liquid-crystals commercial devices. Moreover, we demonstrate how the mechanical resonance can be non-trivially affected by the input light polarization (and chiral state) via a thermoelastic effect triggered by intracavity photons. This work inaugurates the field of Polarization Optomechanics, which could pave the way to fast polarimetric devices, polarization modulators and dynamically tunable chiral state generators and detectors, as well as giving access to new form of polarization nonlinearities and control.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا