ﻻ يوجد ملخص باللغة العربية
Spectral-spatial based deep learning models have recently proven to be effective in hyperspectral image (HSI) classification for various earth monitoring applications such as land cover classification and agricultural monitoring. However, due to the nature of black-box model representation, how to explain and interpret the learning process and the model decision, especially for vegetation classification, remains an open challenge. This study proposes a novel interpretable deep learning model -- a biologically interpretable two-stage deep neural network (BIT-DNN), by incorporating the prior-knowledge (i.e. biophysical and biochemical attributes and their hierarchical structures of target entities) based spectral-spatial feature transformation into the proposed framework, capable of achieving both high accuracy and interpretability on HSI based classification tasks. The proposed model introduces a two-stage feature learning process: in the first stage, an enhanced interpretable feature block extracts the low-level spectral features associated with the biophysical and biochemical attributes of target entities; and in the second stage, an interpretable capsule block extracts and encapsulates the high-level joint spectral-spatial features representing the hierarchical structure of biophysical and biochemical attributes of these target entities, which provides the model an improved performance on classification and intrinsic interpretability with reduced computational complexity. We have tested and evaluated the model using four real HSI datasets for four separate tasks (i.e. plant species classification, land cover classification, urban scene recognition, and crop disease recognition tasks). The proposed model has been compared with five state-of-the-art deep learning models.
Hyperspectral images provide detailed spectral information through hundreds of (narrow) spectral channels (also known as dimensionality or bands) with continuous spectral information that can accurately classify diverse materials of interest. The inc
Despite a lot of research efforts devoted in recent years, how to efficiently learn long-term dependencies from sequences still remains a pretty challenging task. As one of the key models for sequence learning, recurrent neural network (RNN) and its
Zero-shot action recognition can recognize samples of unseen classes that are unavailable in training by exploring common latent semantic representation in samples. However, most methods neglected the connotative relation and extensional relation bet
In this paper, we propose a spectral-spatial graph reasoning network (SSGRN) for hyperspectral image (HSI) classification. Concretely, this network contains two parts that separately named spatial graph reasoning subnetwork (SAGRN) and spectral graph
Computerized detection of colonic polyps remains an unsolved issue because of the wide variation in the appearance, texture, color, size, and presence of the multiple polyp-like imitators during colonoscopy. In this paper, we propose a deep convoluti