ﻻ يوجد ملخص باللغة العربية
To date weak gravitational lensing surveys have typically been restricted to small fields of view, such that the $textit{flat-sky approximation}$ has been sufficiently satisfied. However, with Stage IV surveys ($textit{e.g. LSST}$ and $textit{Euclid}$) imminent, extending mass-mapping techniques to the sphere is a fundamental necessity. As such, we extend the sparse hierarchical Bayesian mass-mapping formalism presented in previous work to the spherical sky. For the first time, this allows us to construct $textit{maximum a posteriori}$ spherical weak lensing dark-matter mass-maps, with principled Bayesian uncertainties, without imposing or assuming Gaussianty. We solve the spherical mass-mapping inverse problem in the analysis setting adopting a sparsity promoting Laplace-type wavelet prior, though this theoretical framework supports all log-concave posteriors. Our spherical mass-mapping formalism facilitates principled statistical interpretation of reconstructions. We apply our framework to convergence reconstruction on high resolution N-body simulations with pseudo-Euclid masking, polluted with a variety of realistic noise levels, and show a significant increase in reconstruction fidelity compared to standard approaches. Furthermore we perform the largest joint reconstruction to date of the majority of publicly available shear observational datasets (combining DESY1, KiDS450 and CFHTLens) and find that our formalism recovers a convergence map with significantly enhanced small-scale detail. Within our Bayesian framework we validate, in a statistically rigorous manner, the communitys intuition regarding the need to smooth spherical Kaiser-Squires estimates to provide physically meaningful convergence maps. Such approaches cannot reveal the small-scale physical structures that we recover within our framework.
Convergence maps of the integrated matter distribution are a key science result from weak gravitational lensing surveys. To date, recovering convergence maps has been performed using a planar approximation of the celestial sphere. However, with the i
Until recently mass-mapping techniques for weak gravitational lensing convergence reconstruction have lacked a principled statistical framework upon which to quantify reconstruction uncertainties, without making strong assumptions of Gaussianity. In
A crucial aspect of mass-mapping, via weak lensing, is quantification of the uncertainty introduced during the reconstruction process. Properly accounting for these errors has been largely ignored to date. We present a new method to reconstruct maxim
Weak lensing convergence maps - upon which higher order statistics can be calculated - can be recovered from observations of the shear field by solving the lensing inverse problem. For typical surveys this inverse problem is ill-posed (often seriousl
The millihertz gravitational-wave frequency band is expected to contain a rich symphony of signals with sources ranging from galactic white dwarf binaries to extreme mass ratio inspirals. Many of these gravitational-wave signals will not be individua