ترغب بنشر مسار تعليمي؟ اضغط هنا

Sparse Bayesian mass-mapping with uncertainties: local credible intervals

185   0   0.0 ( 0 )
 نشر من قبل Matthew Price
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Until recently mass-mapping techniques for weak gravitational lensing convergence reconstruction have lacked a principled statistical framework upon which to quantify reconstruction uncertainties, without making strong assumptions of Gaussianity. In previous work we presented a sparse hierarchical Bayesian formalism for convergence reconstruction that addresses this shortcoming. Here, we draw on the concept of local credible intervals (cf. Bayesian error bars) as an extension of the uncertainty quantification techniques previously detailed. These uncertainty quantification techniques are benchmarked against those recovered via Px-MALA - a state of the art proximal Markov Chain Monte Carlo (MCMC) algorithm. We find that typically our recovered uncertainties are everywhere conservative, of similar magnitude and highly correlated (Pearson correlation coefficient $geq 0.85$) with those recovered via Px-MALA. Moreover, we demonstrate an increase in computational efficiency of $mathcal{O}(10^6)$ when using our sparse Bayesian approach over MCMC techniques. This computational saving is critical for the application of Bayesian uncertainty quantification to large-scale stage IV surveys such as LSST and Euclid.



قيم البحث

اقرأ أيضاً

A crucial aspect of mass-mapping, via weak lensing, is quantification of the uncertainty introduced during the reconstruction process. Properly accounting for these errors has been largely ignored to date. We present a new method to reconstruct maxim um a posteriori (MAP) convergence maps by formulating an unconstrained Bayesian inference problem with Laplace-type l1-norm sparsity-promoting priors, which we solve via convex optimization. Approaching mass-mapping in this manner allows us to exploit recent developments in probability concentration theory to infer theoretically conservative uncertainties for our MAP reconstructions, without relying on assumptions of Gaussianity. For the first time these methods allow us to perform hypothesis testing of structure, from which it is possible to distinguish between physical objects and artifacts of the reconstruction. Here we present this new formalism, demonstrate the method on simulations, before applying the developed formalism to two observational datasets of the Abel-520 cluster. Initial reconstructions of the Abel-520 catalogs reported the detection of an anomalous dark core -- an over dense region with no optical counterpart -- which was taken to be evidence for self-interacting dark-matter. In our Bayesian framework it is found that neither Abel-520 dataset can conclusively determine the physicality of such dark cores at 99% confidence. However, in both cases the recovered MAP estimators are consistent with both sets of data.
Weak lensing convergence maps - upon which higher order statistics can be calculated - can be recovered from observations of the shear field by solving the lensing inverse problem. For typical surveys this inverse problem is ill-posed (often seriousl y) leading to substantial uncertainty on the recovered convergence maps. In this paper we propose novel methods for quantifying the Bayesian uncertainty in the location of recovered features and the uncertainty in the cumulative peak statistic - the peak count as a function of signal to noise ratio (SNR). We adopt the sparse hierarchical Bayesian mass-mapping framework developed in previous work, which provides robust reconstructions and principled statistical interpretation of reconstructed convergence maps without the need to assume or impose Gaussianity. We demonstrate our uncertainty quantification techniques on both Bolshoi N-body (cluster scale) and Buzzard V-1.6 (large scale structure) N-body simulations. For the first time, this methodology allows one to recover approximate Bayesian upper and lower limits on the cumulative peak statistic at well defined confidence levels.
To date weak gravitational lensing surveys have typically been restricted to small fields of view, such that the $textit{flat-sky approximation}$ has been sufficiently satisfied. However, with Stage IV surveys ($textit{e.g. LSST}$ and $textit{Euclid} $) imminent, extending mass-mapping techniques to the sphere is a fundamental necessity. As such, we extend the sparse hierarchical Bayesian mass-mapping formalism presented in previous work to the spherical sky. For the first time, this allows us to construct $textit{maximum a posteriori}$ spherical weak lensing dark-matter mass-maps, with principled Bayesian uncertainties, without imposing or assuming Gaussianty. We solve the spherical mass-mapping inverse problem in the analysis setting adopting a sparsity promoting Laplace-type wavelet prior, though this theoretical framework supports all log-concave posteriors. Our spherical mass-mapping formalism facilitates principled statistical interpretation of reconstructions. We apply our framework to convergence reconstruction on high resolution N-body simulations with pseudo-Euclid masking, polluted with a variety of realistic noise levels, and show a significant increase in reconstruction fidelity compared to standard approaches. Furthermore we perform the largest joint reconstruction to date of the majority of publicly available shear observational datasets (combining DESY1, KiDS450 and CFHTLens) and find that our formalism recovers a convergence map with significantly enhanced small-scale detail. Within our Bayesian framework we validate, in a statistically rigorous manner, the communitys intuition regarding the need to smooth spherical Kaiser-Squires estimates to provide physically meaningful convergence maps. Such approaches cannot reveal the small-scale physical structures that we recover within our framework.
For estimating a lower bounded location or mean parameter for a symmetric and logconcave density, we investigate the frequentist performance of the $100(1-alpha)%$ Bayesian HPD credible set associated with priors which are truncations of flat priors onto the restricted parameter space. Various new properties are obtained. Namely, we identify precisely where the minimum coverage is obtained and we show that this minimum coverage is bounded between $1-frac{3alpha}{2}$ and $1-frac{3alpha}{2}+frac{alpha^2}{1+alpha}$; with the lower bound $1-frac{3alpha}{2}$ improving (for $alpha leq 1/3$) on the previously established ([9]; [8]) lower bound $frac{1-alpha}{1+alpha}$. Several illustrative examples are given.
We study methods for reconstructing Bayesian uncertainties on dynamical mass estimates of galaxy clusters using convolutional neural networks (CNNs). We discuss the statistical background of approximate Bayesian neural networks and demonstrate how va riational inference techniques can be used to perform computationally tractable posterior estimation for a variety of deep neural architectures. We explore how various model designs and statistical assumptions impact prediction accuracy and uncertainty reconstruction in the context of cluster mass estimation. We measure the quality of our model posterior recovery using a mock cluster observation catalog derived from the MultiDark simulation and UniverseMachine catalog. We show that approximate Bayesian CNNs produce highly accurate dynamical cluster mass posteriors. These model posteriors are log-normal in cluster mass and recover $68%$ and $90%$ confidence intervals to within $1%$ of their measured value. We note how this rigorous modeling of dynamical mass posteriors is necessary for using cluster abundance measurements to constrain cosmological parameters.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا