ﻻ يوجد ملخص باللغة العربية
Until recently mass-mapping techniques for weak gravitational lensing convergence reconstruction have lacked a principled statistical framework upon which to quantify reconstruction uncertainties, without making strong assumptions of Gaussianity. In previous work we presented a sparse hierarchical Bayesian formalism for convergence reconstruction that addresses this shortcoming. Here, we draw on the concept of local credible intervals (cf. Bayesian error bars) as an extension of the uncertainty quantification techniques previously detailed. These uncertainty quantification techniques are benchmarked against those recovered via Px-MALA - a state of the art proximal Markov Chain Monte Carlo (MCMC) algorithm. We find that typically our recovered uncertainties are everywhere conservative, of similar magnitude and highly correlated (Pearson correlation coefficient $geq 0.85$) with those recovered via Px-MALA. Moreover, we demonstrate an increase in computational efficiency of $mathcal{O}(10^6)$ when using our sparse Bayesian approach over MCMC techniques. This computational saving is critical for the application of Bayesian uncertainty quantification to large-scale stage IV surveys such as LSST and Euclid.
A crucial aspect of mass-mapping, via weak lensing, is quantification of the uncertainty introduced during the reconstruction process. Properly accounting for these errors has been largely ignored to date. We present a new method to reconstruct maxim
Weak lensing convergence maps - upon which higher order statistics can be calculated - can be recovered from observations of the shear field by solving the lensing inverse problem. For typical surveys this inverse problem is ill-posed (often seriousl
To date weak gravitational lensing surveys have typically been restricted to small fields of view, such that the $textit{flat-sky approximation}$ has been sufficiently satisfied. However, with Stage IV surveys ($textit{e.g. LSST}$ and $textit{Euclid}
For estimating a lower bounded location or mean parameter for a symmetric and logconcave density, we investigate the frequentist performance of the $100(1-alpha)%$ Bayesian HPD credible set associated with priors which are truncations of flat priors
We study methods for reconstructing Bayesian uncertainties on dynamical mass estimates of galaxy clusters using convolutional neural networks (CNNs). We discuss the statistical background of approximate Bayesian neural networks and demonstrate how va