ﻻ يوجد ملخص باللغة العربية
Recently spiking neural networks (SNNs), the third-generation of neural networks has shown remarkable capabilities of energy-efficient computing, which is a promising alternative for deep neural networks (DNNs) with high energy consumption. SNNs have reached competitive results compared to DNNs in relatively simple tasks and small datasets such as image classification and MNIST/CIFAR, while few studies on more challenging vision tasks on complex datasets. In this paper, we focus on extending deep SNNs to object tracking, a more advanced vision task with embedded applications and energy-saving requirements, and present a spike-based Siamese network called SiamSNN. Specifically, we propose an optimized hybrid similarity estimation method to exploit temporal information in the SNNs, and introduce a novel two-status coding scheme to optimize the temporal distribution of output spike trains for further improvements. SiamSNN is the first deep SNN tracker that achieves short latency and low precision loss on the visual object tracking benchmarks OTB2013/2015, VOT2016/2018, and GOT-10k. Moreover, SiamSNN achieves notably low energy consumption and real-time on Neuromorphic chip TrueNorth.
Siamese-based trackers have achieved excellent performance on visual object tracking. However, the target template is not updated online, and the features of the target template and search image are computed independently in a Siamese architecture. I
In this paper, we focus on improving online multi-object tracking (MOT). In particular, we introduce a region-based Siamese Multi-Object Tracking network, which we name SiamMOT. SiamMOT includes a motion model that estimates the instances movement be
Deep neural networks (DNN) have achieved remarkable success in computer vision (CV). However, training and inference of DNN models are both memory and computation intensive, incurring significant overhead in terms of energy consumption and silicon ar
The current Siamese network based on region proposal network (RPN) has attracted great attention in visual tracking due to its excellent accuracy and high efficiency. However, the design of the RPN involves the selection of the number, scale, and asp
Spiking neural networks (SNNs) offer an inherent ability to process spatial-temporal data, or in other words, realworld sensory data, but suffer from the difficulty of training high accuracy models. A major thread of research on SNNs is on converting