ﻻ يوجد ملخص باللغة العربية
We derive transformation equations between GALEX and UBV colours by using the reliable data of 556 stars. We present two sets of equations; as a function of (only) luminosity class, and as a function of both luminosity class and metallicity. The metallicities are provided from the literature, while the luminosity classes are determined by using the PARSEC mass tracks in this study. Small colour residuals and high squared correlation coefficients promise accurate derived colours. The application of the transformation equations to 70 stars with reliable data shows that the metallicity plays an important role in estimation of more accurate colours.
Although core helium-burning red clump (RC) stars are faint at ultraviolet wavelengths, their ultraviolet-optical color is a unique and accessible probe of their physical properties. Using data from the GALEX All Sky Imaging Survey, Gaia Data Release
Interstellar extinction in ultraviolet is the most severe in comparison with optical and infrared wavebands and a precise determination plays an important role in correctly recovering the ultraviolet brightness and colors of objects. By finding the o
We present colour transformations for the conversion of the {em 2MASS} photometric system to the Johnson-Cousins $UBVRI$ system and further into the {em SDSS} $ugriz$ system. We have taken {em SDSS} $gri$ magnitudes of stars measured with the 2.5-m t
SN 1572 (Tycho Brahes supernova) clearly belongs to the Ia (thermonuclear) type. It was produced by the explosion of a white dwarf in a binary system. Its remnant has been the first of this type to be explored in search of a possible surviving compan
Machine learning techniques, specifically the k-nearest neighbour algorithm applied to optical band colours, have had some success in predicting photometric redshifts of quasi-stellar objects (QSOs): Although the mean of differences between the spect