ﻻ يوجد ملخص باللغة العربية
Interstellar extinction in ultraviolet is the most severe in comparison with optical and infrared wavebands and a precise determination plays an important role in correctly recovering the ultraviolet brightness and colors of objects. By finding the observed bluest colors at given effective temperature and metallicity range of dwarf stars, stellar intrinsic colors, $C^0_{rm B,V}$, $C^0_{rm NUV,B}$, $C^0_{rm FUV,B}$ and $C^0_{rm FUV,NUV}$, are derived according to the stellar parameters from the LAMOST spectroscopic survey and photometric results from the $GALEX$ and APASS surveys. With the derived intrinsic colors, the ultraviolet color excesses are calculated for about 25,000 A- and F-type dwarf stars. Analysis of the color excess ratios yields the extinction law related to the $GALEX$ UV bands: $E_{{rm NUV,B}}$/$E_{{rm B,V}} = 3.77$, $E_{{rm FUV,B}}$/$E_{{rm B,V}} = 3.39$, $E_{{rm FUV,NUV}}$/$E_{{rm B,V}} = -0.38$. The results agree very well with previous works in the $NUV$ band and in general with the extinction curve derived by Fitzpatrick (1999) for $R_{rm V}=3.35$.
We use 1837 DA white dwarfs with high signal to noise ratio spectra and Gaia parallaxes to verify the absolute calibration and extinction coefficients for the Galaxy Evolution Explorer (GALEX). We use white dwarfs within 100 pc to verify the linearit
We derive transformation equations between GALEX and UBV colours by using the reliable data of 556 stars. We present two sets of equations; as a function of (only) luminosity class, and as a function of both luminosity class and metallicity. The meta
Although core helium-burning red clump (RC) stars are faint at ultraviolet wavelengths, their ultraviolet-optical color is a unique and accessible probe of their physical properties. Using data from the GALEX All Sky Imaging Survey, Gaia Data Release
We have studied the interstellar extinction in a field of ~3 x 3 at the core of the 30 Doradus nebula, including the central R136 cluster, in the Large Magellanic Cloud. Observations at optical and near-infrared wavelengths, obtained with the WFC3 ca
Most (~82%) of the over 4000 confirmed exoplanets known today orbit very close to their host stars, within 0.5 au. Planets at such small orbital distances can result in significant interactions with their host stars, which can induce increased activi