ﻻ يوجد ملخص باللغة العربية
Antiferromagnets offer spintronic device characteristics unparalleled in ferromagnets owing to their lack of stray fields, THz spin dynamics, and rich materials landscape. Microscopic imaging of aniferromagnetic domains is one of the key prerequisites for understading physical principles of the device operation. However, adapting common magnetometry techniques to the dipolar-field-free antiferromagnets has been a major challenge. Here we demonstrate in a collinear antiferromagnet a thermoelectric detection method by combining the magneto-Seebeck effect with local heat gradients generated by scanning far-field or near-field techniques. In a 20 nm epilayer of uniaxial CuMnAs we observe reversible 180 deg switching of the Neel vector via domain wall displacement, controlled by the polarity of the current pulses. We also image polarity-dependent 90 deg switching of the Neel vector in a thicker biaxial film, and domain shattering induced at higher pulse amplitudes. The antiferromagnetic domain maps obtained by our laboratory technique are compared to measurements by the established synchrotron microscopy using X-ray magnetic linear dichroism.
Magnons in antiferromagnets can support both right-handed and left-handed chiralities, which shed a light on the chirality-based spintronics. Here we demonstrate the switching and reading of magnon chirality in an artificial antiferromagnet. The coex
We show scalable and complete suppression of the recently reported terahertz-pulse-induced switching between different resistance states of antiferromagnetic CuMnAs thin films by ultrafast gating. The gating functionality is achieved by an optically
Voltage control of interfacial magnetism has been greatly highlighted in spintronics research for many years, as it might enable ultra-low power technologies. Among few suggested approaches, magneto-ionic control of magnetism has demonstrated large m
Memristive devices whose resistance can be hysteretically switched by electric field or current are intensely pursued both for fundamental interest as well as potential applications in neuromorphic computing and phase-change memory. When the underlyi
We resolve the domain-wall structure of the model antiferromagnet $text{Cr}_2text{O}_3$ using nanoscale scanning diamond magnetometry and second-harmonic-generation microscopy. We find that the 180$^circ$ domain walls are predominantly Bloch-like, an