ﻻ يوجد ملخص باللغة العربية
We study the use of methods based on the real symplectic groups $Sp(2n,mathcal{R})$ in the analysis of the Arthurs-Kelly model of proposed simultaneous measurements of position and momentum in quantum mechanics. Consistent with the fact that such measurements are in fact not possible, we show that the observable consequences of the Arthurs-Kelly interaction term are contained in the symplectic transformation law connecting the system plus apparatus variance matrices at an initial and a final time. The individual variance matrices are made up of averages and spreads or uncertainties for single hermitian observables one at a time, which are quantum mechanically well defined. The consequences of the multimode symplectic covariant Uncertainty Principle in the Arthurs-Kelly context are examined.
We describe how to obtain information on a quantum-mechanical system by coupling it to a probe and detecting some property of the latter, using a model introduced by von Neumann, which describes the interaction of the system proper with the probe in
The experimental realization of successive non-demolition measurements on single microscopic systems brings up the question of ergodicity in Quantum Mechanics (QM). We investigate whether time averages over one realization of a single system are rela
We point out that, if one accepts the validity of quantum mechanics, the Bell parameter for the polarization state of two photons can be measured in a simpler way than by the standard procedure [Clauser, Horne, Shimony, and Holt, Phys. Rev. Lett. 23,
The analysis of the model quantum clocks proposed by Aharonov et al. [Phys. Rev. A 57 (1998) 4130 - quant-ph/9709031] requires considering evanescent components, previously ignored. We also clarify the meaning of the operational time of arrival distribution which had been investigated.
In this article we describe the relation between the Chern-Simons gauge theory partition function and the partition function defined using the symplectic action functional as the Lagrangian. We show that the partition functions obtained using these t