ﻻ يوجد ملخص باللغة العربية
Synthetic likelihood (SL) is a strategy for parameter inference when the likelihood function is analytically or computationally intractable. In SL, the likelihood function of the data is replaced by a multivariate Gaussian density over summary statistics of the data. SL requires simulation of many replicate datasets at every parameter value considered by a sampling algorithm, such as MCMC, making the method computationally-intensive. We propose two strategies to alleviate the computational burden imposed by SL algorithms. We first introduce a novel MCMC algorithm for SL where the proposal distribution is sequentially tuned and is also made conditional to data, thus it rapidly guides the proposed parameters towards high posterior probability regions. Second, we exploit strategies borrowed from the correlated pseudo-marginal MCMC literature, to improve the chains mixing in a SL framework. Our methods enable inference for challenging case studies when the chain is initialised in low posterior probability regions of the parameter space, where standard samplers failed. Our guided sampler can also be potentially used with MCMC samplers for approximate Bayesian computation (ABC). Our goal is to provide ways to make the best out of each expensive MCMC iteration, which will broaden the scope of likelihood-free inference for models with costly simulators. To illustrate the advantages stemming from our framework we consider four benchmark examples, including estimation of parameters for a cosmological model and a stochastic model with highly non-Gaussian summary statistics.
The challenges posed by complex stochastic models used in computational ecology, biology and genetics have stimulated the development of approximate approaches to statistical inference. Here we focus on Synthetic Likelihood (SL), a procedure that red
A large number of statistical models are doubly-intractable: the likelihood normalising term, which is a function of the model parameters, is intractable, as well as the marginal likelihood (model evidence). This means that standard inference techniq
This article surveys computational methods for posterior inference with intractable likelihoods, that is where the likelihood function is unavailable in closed form, or where evaluation of the likelihood is infeasible. We review recent developments i
We investigate the use of data-driven likelihoods to bypass a key assumption made in many scientific analyses, which is that the true likelihood of the data is Gaussian. In particular, we suggest using the optimization targets of flow-based generativ
We propose a novel Markov chain Monte-Carlo (MCMC) method for reverse engineering the topological structure of stochastic reaction networks, a notoriously challenging problem that is relevant in many modern areas of research, like discovering gene re