ترغب بنشر مسار تعليمي؟ اضغط هنا

On Russian Roulette Estimates for Bayesian Inference with Doubly-Intractable Likelihoods

245   0   0.0 ( 0 )
 نشر من قبل Anne-Marie Lyne
 تاريخ النشر 2013
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

A large number of statistical models are doubly-intractable: the likelihood normalising term, which is a function of the model parameters, is intractable, as well as the marginal likelihood (model evidence). This means that standard inference techniques to sample from the posterior, such as Markov chain Monte Carlo (MCMC), cannot be used. Examples include, but are not confined to, massive Gaussian Markov random fields, autologistic models and Exponential random graph models. A number of approximate schemes based on MCMC techniques, Approximate Bayesian computation (ABC) or analytic approximations to the posterior have been suggested, and these are reviewed here. Exact MCMC schemes, which can be applied to a subset of doubly-intractable distributions, have also been developed and are described in this paper. As yet, no general method exists which can be applied to all classes of models with doubly-intractable posteriors. In addition, taking inspiration from the Physics literature, we study an alternative method based on representing the intractable likelihood as an infinite series. Unbiased estimates of the likelihood can then be obtained by finite time stochastic truncation of the series via Russian Roulette sampling, although the estimates are not necessarily positive. Results from the Quantum Chromodynamics literature are exploited to allow the use of possibly negative estimates in a pseudo-marginal MCMC scheme such that expectations with respect to the posterior distribution are preserved. The methodology is reviewed on well-known examples such as the parameters in Ising models, the posterior for Fisher-Bingham distributions on the $d$-Sphere and a large-scale Gaussian Markov Random Field model describing the Ozone Column data. This leads to a critical assessment of the strengths and weaknesses of the methodology with pointers to ongoing research.



قيم البحث

اقرأ أيضاً

This article surveys computational methods for posterior inference with intractable likelihoods, that is where the likelihood function is unavailable in closed form, or where evaluation of the likelihood is infeasible. We review recent developments i n pseudo-marginal methods, approximate Bayesian computation (ABC), the exchange algorithm, thermodynamic integration, and composite likelihood, paying particular attention to advancements in scalability for large datasets. We also mention R and MATLAB source code for implementations of these algorithms, where they are available.
We use the theory of normal variance-mean mixtures to derive a data augmentation scheme for models that include gamma functions. Our methodology applies to many situations in statistics and machine learning, including Multinomial-Dirichlet distributi ons, Negative binomial regression, Poisson-Gamma hierarchical models, Extreme value models, to name but a few. All of those models include a gamma function which does not admit a natural conjugate prior distribution providing a significant challenge to inference and prediction. To provide a data augmentation strategy, we construct and develop the theory of the class of Exponential Reciprocal Gamma distributions. This allows scalable EM and MCMC algorithms to be developed. We illustrate our methodology on a number of examples, including gamma shape inference, negative binomial regression and Dirichlet allocation. Finally, we conclude with directions for future research.
This preprint has been reviewed and recommended by Peer Community In Evolutionary Biology (http://dx.doi.org/10.24072/pci.evolbiol.100036). Approximate Bayesian computation (ABC) has grown into a standard methodology that manages Bayesian inference f or models associated with intractable likelihood functions. Most ABC implementations require the preliminary selection of a vector of informative statistics summarizing raw data. Furthermore, in almost all existing implementations, the tolerance level that separates acceptance from rejection of simulated parameter values needs to be calibrated. We propose to conduct likelihood-free Bayesian inferences about parameters with no prior selection of the relevant components of the summary statistics and bypassing the derivation of the associated tolerance level. The approach relies on the random forest methodology of Breiman (2001) applied in a (non parametric) regression setting. We advocate the derivation of a new random forest for each component of the parameter vector of interest. When compared with earlier ABC solutions, this method offers significant gains in terms of robustness to the choice of the summary statistics, does not depend on any type of tolerance level, and is a good trade-off in term of quality of point estimator precision and credible interval estimations for a given computing time. We illustrate the performance of our methodological proposal and compare it with earlier ABC methods on a Normal toy example and a population genetics example dealing with human population evolution. All methods designed here have been incorporated in the R package abcrf (version 1.7) available on CRAN.
The challenges posed by complex stochastic models used in computational ecology, biology and genetics have stimulated the development of approximate approaches to statistical inference. Here we focus on Synthetic Likelihood (SL), a procedure that red uces the observed and simulated data to a set of summary statistics, and quantifies the discrepancy between them through a synthetic likelihood function. SL requires little tuning, but it relies on the approximate normality of the summary statistics. We relax this assumption by proposing a novel, more flexible, density estimator: the Extended Empirical Saddlepoint approximation. In addition to proving the consistency of SL, under either the new or the Gaussian density estimator, we illustrate the method using two examples. One of these is a complex individual-based forest model for which SL offers one of the few practical possibilities for statistical inference. The examples show that the new density estimator is able to capture large departures from normality, while being scalable to high dimensions, and this in turn leads to more accurate parameter estimates, relative to the Gaussian alternative. The new density estimator is implemented by the esaddle R package, which can be found on the Comprehensive R Archive Network (CRAN).
It has become increasingly common to collect high-dimensional binary data; for example, with the emergence of new sampling techniques in ecology. In smaller dimensions, multivariate probit (MVP) models are routinely used for inferences. However, algo rithms for fitting such models face issues in scaling up to high dimensions due to the intractability of the likelihood, involving an integral over a multivariate normal distribution having no analytic form. Although a variety of algorithms have been proposed to approximate this intractable integral, these approaches are difficult to implement and/or inaccurate in high dimensions. We propose a two-stage Bayesian approach for inference on model parameters while taking care of the uncertainty propagation between the stages. We use the special structure of latent Gaussian models to reduce the highly expensive computation involved in joint parameter estimation to focus inference on marginal distributions of model parameters. This essentially makes the method embarrassingly parallel for both stages. We illustrate performance in simulations and applications to joint species distribution modeling in ecology.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا