ﻻ يوجد ملخص باللغة العربية
In this paper, a low radar cross section (RCS) patch antenna based on the 3-bit metasurface composed of linear polarization conversion elements is designed. At first, 3-bit coding metamaterials are constructed by a sequence of eight coded unit cells, which have a similar cross-polarized reflected amplitude response and gradient reflected phase responses covering 0~2{pi}, respectively. Equivalent circuit models (ECMs) of these unit cells are created to describe their electrical behavior for the two linear incident polarizations at the same time. Then, a patch antenna is integrated on the 3-bit metasurface, of which the elements are placed with a 2-dimensional linear coding sequence. The metal square ring is set around the patch antenna to protect it from the disturbance of metasurface. Both the simulation and experiment results demonstrate that the designed metasurface can primarily reduce the antenna RCS at a broadband, while the antenna performances are not degraded significantly.
Antenna technology is at the basis of ubiquitous wireless communication systems and sensors. Radiation is typically sustained by conduction currents flowing around resonant metallic objects that are optimized to enhance efficiency and bandwidth. Howe
Solar arrays are the primary energy source of the satellite. In this paper, a metamaterial absorber for solar arrays with simultaneous high optical transparency and broadband microwave absorption is presented. By tailoring the reflection response of
In this paper, a novel concept of a leaky-wave antenna is proposed, based on the use of Huygens metasurfaces. It consists of a parallel-plate waveguide in which the top plate is replaced by a bianisotropic metasurface of the Omega type. It is shown t
The dual harmonic system has been widely used in high intensity proton synchrotrons to suppress the space charge effect, as well as reduce the beam loss. To investigate the longitudinal beam dynamics in the dual rf system, the potential well, the sub
A room-temperature mid-infrared (9 um) heterodyne system based on high-performance unipolar optoelectronic devices is presented. The local oscillator (LO) is a quantum cascade laser, while the receiver is an antenna coupled quantum well infrared phot