ﻻ يوجد ملخص باللغة العربية
This paper considers the Hinfty-optimal estimation problem for linear systems with multiple delays in states, output, and disturbances. First, we formulate the Hinfty-optimal estimation problem in the Delay-Differential Equation (DDE) framework. Next, we construct an equivalent Partial Integral Equation (PIE) representation of the optimal estimator design framework. We then show that in the PIE framework, the Hinfty-optimal estimator synthesis problem can be posed as a Linear PI Inequality (LPI). LPIs are a generalization of LMIs to the algebra of Partial Integral (PI) operators and can be solved using the PIETOOLS toolbox. Finally, we convert the PIE representation of the optimal estimator back into an ODE-PDE representation - a form similar to a DDE, but with corrections to estimates of the infinite-dimensional state (the time-history). Numerical examples show that the synthesis condition we propose produces an estimator with provable Hinfty-gain bound which is accurate to 4 decimal places when compared with results obtained using Pade-based discretization.
Observer design typically requires the observability of the underlying system, which may be hard to verify for nonlinear systems, while guaranteeing asymptotic convergence of errors, which may be insufficient in order to satisfy performance condition
In this short article, we showcase the derivation of an optimal predictor, when one part of systems output is not measured but is able to be predicted from the rest of the systems output which is measured. According to authors knowledge, similar deri
In this report, we present a new Linear-Quadratic Semistabilizers (LQS) theory for linear network systems. This new semistable H2 control framework is developed to address the robust and optimal semistable control issues of network systems while pres
This article treats three problems of sparse and optimal multiplexing a finite ensemble of linear control systems. Given an ensemble of linear control systems, multiplexing of the controllers consists of an algorithm that selects, at each time (t), o
This paper investigates the H2 and H-infinity suboptimal distributed filtering problems for continuous time linear systems. Consider a linear system monitored by a number of filters, where each of the filters receives only part of the measured output