ﻻ يوجد ملخص باللغة العربية
At ground level, the azimuthal distribution of muons in inclined Extensive Air Showers (EAS) is asymmetric, mainly due to geometric effects. Several EAS observables sensitive to the primary particle mass, are constructed after mapping the density of secondary particles from the ground plane to the shower plane (perpendicular to the shower axis). A simple orthogonal projection of the muon coordinates onto this plane distorts the azimuthal symmetry in the shower plane. Using CORSIKA simulations, we correct for this distortion by projecting each muon onto the normal plane following its incoming direction, taking also into account the attenuation probability. We show that besides restoring the azimuthal symmetry of muons density around the shower axis, the application of this procedure has a significant impact on the reconstruction of the distribution of the muon production depth and of its maximum, $X_{rm max}^{mu}$, which is an EAS observable sensitive to the primary particle mass. Our results qualitatively suggest that not including it in the reconstruction process of $X_{rm max}^{mu}$ may introduce a bias in the results obtained by analyzing the actual data on the basis of Monte Carlo simulations.
The number of muons in extensive air showers predicted using LHC-tuned hadronic interaction models, such as EPOS-LHC and QGSJetII-04, is smaller than observed in showers recorded by leading cosmic ray experiments. In this paper, we present a new meth
Radio detection of extensive air showers initiated in the Earths atmosphere has made tremendous progress in the last decade. Today, radio detection is routinely used in several cosmic-ray observatories. The physics of the radio emission in air shower
In this work, direct measurements of the muon density at $1000,textrm{m}$ from the shower axis obtained by the Akeno Giant Air Shower Array (AGASA) are analysed. The selected events have zenith angles $theta leq 36^{textrm{o}}$ and reconstructed ener
We describe the method devised to reconstruct inclined cosmic-ray air showers with zenith angles greater than $60^circ$ detected with the surface array of the Pierre Auger Observatory. The measured signals at the ground level are fitted to muon densi
Applying the recently constructed analytic representation for the pp scattering amplitudes, we present a study of p-air cross sections, with comparison to the data from Extensive Air Shower (EAS) measurements. The amplitudes describe with precision a