ﻻ يوجد ملخص باللغة العربية
We present a method for calculation of Raman modes of the quantum solid phase I solid hydrogen and deuterium. We use the mean-field assumption that the quantised excitations are localized on one molecule. This is done by explicit solution of the time-dependent Schroedinger equation in an angle-dependent potential, and direct calculation of the polarisation. We show that in the free-rotor limit, the H$_2$ and D$_2$ frequencies differ by a factor of 2, which evolves toward $sqrt{2}$ as the modes acquire librational character due to stronger interactions. The ratio overshoots $sqrt{2}$ if anharmonic terms weaken the harmonic potential. We also use density functional theory and molecular dynamics to calculate the E$_{2_g}$ optical phonon frequency and the Raman linewidths. The molecular dynamics shows that the molecules are not free rotors except at very low pressure and high temperature, and become like oscillators as phase II is approached. We fit the interaction strengths to experimental frequencies, but good agreement for intensities requires us to also include strong preferred-orientation and stimulated Raman effects between S$_0$(1) and S$_0$(0) contributions. The experimental Raman spectrum for phase II cannot be reproduced, showing that the mean-field assumption is invalid in that case.
We find unusually large cross-polarized (and anti-symmetric) Raman signature of A$_{rm g}$ phonon mode in CrI$_3$, in agreement with experiments. The signal is present only when the following three effects are considered in concert: ferromagnetism on
The current understanding of motility through body shape deformation of microorganisms and the knowledge of fluid flows at the microscale provides ample examples for mimicry and design of soft microrobots. In this work, a two-dimensional spiral is pr
A theoretical study on the rotational dynamics of H2 molecules trapped in the interstitial channels (ICs) of a carbon nanotube bundle is presented. The potential used in this study is modeled as a sum of atom-atom (C-H) van der Waals interactions and
Graphene is the two-dimensional (2d) building block for carbon allotropes of every other dimensionality. It can be stacked into 3d graphite, rolled into 1d nanotubes, or wrapped into 0d fullerenes. Its recent discovery in free state has finally provi
Multi-layer graphene with rhombohedral stacking is a promising carbon phase possibly displaying correlated states like magnetism or superconductivity due to the occurrence of a flat surface band at the Fermi level. Recently, flakes of thickness up to