ترغب بنشر مسار تعليمي؟ اضغط هنا

A Light-Driven Microgel Rotor

80   0   0.0 ( 0 )
 نشر من قبل Hang Zhang
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The current understanding of motility through body shape deformation of microorganisms and the knowledge of fluid flows at the microscale provides ample examples for mimicry and design of soft microrobots. In this work, a two-dimensional spiral is presented that is capable of rotating by non-reciprocal curling deformations. The body of the microswimmer is a ribbon consisting of a thermo-responsive hydrogel bilayer with embedded plasmonic gold nanorods. Such a system allows fast local photothermal heating and non-reciprocal bending deformation of the hydrogel bilayer under non-equilibrium conditions. We show that the spiral acts as a spring capable of large deformations thanks to its low stiffness, which is tunable by the swelling degree of the hydrogel and the temperature. Tethering the ribbon to a freely rotating microsphere enables rotational motion of the spiral by stroboscopic irradiation. The efficiency of the rotor is estimated using resistive force theory for Stokes flow. The present research demonstrates microscopic locomotion by the shape change of a spiral and may find applications in the field of microfluidics, or soft micro-robotics.



قيم البحث

اقرأ أيضاً

There has been intense interest in filtration and separation properties of graphene-based materials that can have well-defined nanometer pores and exhibit low frictional water flow inside them. Here we investigate molecular permeation through graphen e oxide laminates. They are vacuum-tight in the dry state but, if immersed in water, act as molecular sieves blocking all solutes with hydrated radii larger than 4.5A. Smaller ions permeate through the membranes with little impedance, many orders of magnitude faster than the diffusion mechanism can account for. We explain this behavior by a network of nanocapillaries that open up in the hydrated state and accept only species that fit in. The ultrafast separation of small salts is attributed to an ion sponge effect that results in highly concentrated salt solutions inside graphene capillaries.
Ensembles of particles rotating in a two-dimensional fluid can exhibit chaotic dynamics yet develop signatures of hidden order. Such rotors are found in the natural world spanning vastly disparate length scales - from the rotor proteins in cellular m embranes to models of atmospheric dynamics. Here we show that an initially random distribution of either ideal vortices in an inviscid fluid, or driven rotors in a viscous membrane, spontaneously self assembles. Despite arising from drastically different physics, these systems share a Hamiltonian structure that sets geometrical conservation laws resulting in distinct structural states. We find that the rotationally invariant interactions isotropically suppress long wavelength fluctuations - a hallmark of a disordered hyperuniform material. With increasing area fraction, the system orders into a hexagonal lattice. In mixtures of two co-rotating populations, the stronger population will gain order from the other and both will become phase enriched. Finally, we show that classical 2D point vortex systems arise as exact limits of the experimentally accessible microscopic membrane rotors, yielding a new system through which to study topological defects.
Nonlinear optical processes are vital for fields including telecommunications, signal processing, data storage, spectroscopy, sensing, and imaging. As an independent research area, nonlinear optics began with the invention of the laser, because pract ical sources of intense light needed to generate optical nonlinearities were not previously available. However the high power requirements of many nonlinear optical systems limit their use, especially in portable or medical applications, and so there is a push to develop new materials and resonant structures capable of producing nonlinear optical phenomena with low-power light emitted by inexpensive and compact sources. Acoustic nonlinearities, especially giant acoustic nonlinear phenomena in gas bubbles and liquid droplets, are much stronger than their optical counterparts. Here, we suggest employing acoustic nonlinearities to generate new optical frequencies, thereby effectively reproducing nonlinear optical processes without the need for laser light. We critically survey the current literature dedicated to the interaction of light with nonlinear acoustic waves and highly-nonlinear oscillations of gas bubbles and liquid droplets. We show that the conversion of acoustic nonlinearities into optical signals is possible with low-cost incoherent light sources such as light-emitting diodes, which would usher new classes of low-power photonic devices that are more affordable for remote communities and developing nations, or where there are demanding requirements on size, weight and power.
This study numerically and analytically investigates the dynamics of a rotor under viscous or dry friction as a non-equilibrium probe of a granular gas. In order to demonstrate the role of the rotor as a probe for a non-equilibrium bath, the molecula r dynamics (MD) simulation of the rotor is performed under viscous or dry friction surrounded by a steady granular gas under gravity. A one- to-one map between the velocity distribution function (VDF) of the granular gas and the angular distribution function for the rotor is theoretically derived. The MD simulation demonstrates that the one-to-one map accurately infers the local VDF of the granular gas from the angular VDF of the rotor, and vice versa.
We present a method for calculation of Raman modes of the quantum solid phase I solid hydrogen and deuterium. We use the mean-field assumption that the quantised excitations are localized on one molecule. This is done by explicit solution of the time -dependent Schroedinger equation in an angle-dependent potential, and direct calculation of the polarisation. We show that in the free-rotor limit, the H$_2$ and D$_2$ frequencies differ by a factor of 2, which evolves toward $sqrt{2}$ as the modes acquire librational character due to stronger interactions. The ratio overshoots $sqrt{2}$ if anharmonic terms weaken the harmonic potential. We also use density functional theory and molecular dynamics to calculate the E$_{2_g}$ optical phonon frequency and the Raman linewidths. The molecular dynamics shows that the molecules are not free rotors except at very low pressure and high temperature, and become like oscillators as phase II is approached. We fit the interaction strengths to experimental frequencies, but good agreement for intensities requires us to also include strong preferred-orientation and stimulated Raman effects between S$_0$(1) and S$_0$(0) contributions. The experimental Raman spectrum for phase II cannot be reproduced, showing that the mean-field assumption is invalid in that case.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا