ﻻ يوجد ملخص باللغة العربية
In the paper we propose and solve analytically the non-linear evolution equation in the leading twist approximation for the Odderon contribution. We found three qualitative features of this solution, which differs the Odderon contribution from the Pomeron one :(i) the behaviour in the vicinity of the saturation scale cannot be derived from the linear evolution in a dramatic difference with the Pomeron case; (ii) a substantial decrease of the Odderon contribution with the energy; and (iii) the lack of geometric scaling behaviour. The two last features have been seen in numerical attempts to solve the Odderon equation.
In this paper, we use the re-summation procedure, suggested in Refs.cite{DIMST,SALAM,SALAM1,SALAM2}, to fix the BFKL kernel in the NLO. However, we suggest a different way to introduce th non-linear corrections in the saturation region, which is base
Using some techniques of conformal field theories, we find a closed expression for the contribution of leading twist operators and their descendants, obtained by adding total derivatives, to the operator product expansion (OPE) of two electromagnetic
The very precise combined HERA data provides a testing ground in which the relevance of novel QCD regimes, other than the successful linear DGLAP evolution, in small-x inclusive DIS data can be ascertained. We present a study of the dependence of the
In this paper we compare the experimental HERA data with the next-to-leading order approach (NLO) of Ref.[C.~Contreras, E.~Levin, R.~Meneses and M.~Sanhueza,Eur. Phys. J. C 80 (2020) no.11, 1029). This approach includes the re-summed NLO corrections
In this study, we present continuum limit results for the unpolarized parton distribution function of the nucleon computed in lattice QCD. This study is the first continuum limit using the pseudo-PDF approach with Short Distance Factorization for fac