ترغب بنشر مسار تعليمي؟ اضغط هنا

Linear vs non-linear QCD evolution: from HERA data to LHC phenomenology

138   0   0.0 ( 0 )
 نشر من قبل J. Guilherme Milhano
 تاريخ النشر 2012
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The very precise combined HERA data provides a testing ground in which the relevance of novel QCD regimes, other than the successful linear DGLAP evolution, in small-x inclusive DIS data can be ascertained. We present a study of the dependence of the AAMQS fits, based on the running coupling BK non-linear evolution equations (rcBK), on the fitted dataset. This allows for the identification of the kinematical region where rcBK accurately describes the data, and thus for the determination of its applicability boundary. We compare the rcBK results with NNLO DGLAP fits, obtained with the NNPDF methodology with analogous kinematical cuts. Further, we explore the impact on LHC phenomenology of applying stringent kinematical cuts to the low-x HERA data in a DGLAP fit.



قيم البحث

اقرأ أيضاً

The forthcoming p+Pb run at the LHC will provide crucial in formation on the initial state effects of heavy ion collisions and on the gluon saturation phenomena. In turn, most of the saturation inspired phenomenology in heavy ion collisions borrows s ubstantial empiric information from the analysis of e+p data, where abundant high quality data on the small-x kinematic region is available. Indeed, the very precise combined HERA data provides a testing ground in which the relevance of novel QCD regimes, other than the successful linear DGLAP evolution, in small-x inclusive DIS data can be ascertained. We present a study of the dependence of the AAMQS fits, based on the running coupling BK non-linear evolution equations (rcBK), on the fitted dataset. This allows for the identification of the kinematical region where rcBK accurately describes the data, and thus for the determination of its applicability boundary. It also set important constraints to the saturation models used to model the early stages of heavy ion collisions. Finally we compare the rcBK results with NNLO DGLAP fits, obtained with the NNPDF methodology with analogous kinematical cuts. Further, we explore the impact on LHC phenomenology of applying stringent kinematical cuts to the low-x HERA data in a DGLAP fit.
We present a global analysis of available data on inclusive structure functions measured in electron-proton scattering at small values of Bjorken-x, including the latest data from the combined HERA analysis on reduced cross sections. Our approach rel ies on the dipole formulation of DIS together with the use of the non-linear running coupling BK equation for the description of the small-x dynamics. With the resulting parametrization we are able to describe the latest FL data measured by the H1 collaboration. Further, we discuss the kinematical domain where significant deviations from NLO-DGLAP should be expected and the ability of non-linnear physics to account for such deviations.
In the paper we propose and solve analytically the non-linear evolution equation in the leading twist approximation for the Odderon contribution. We found three qualitative features of this solution, which differs the Odderon contribution from the Po meron one :(i) the behaviour in the vicinity of the saturation scale cannot be derived from the linear evolution in a dramatic difference with the Pomeron case; (ii) a substantial decrease of the Odderon contribution with the energy; and (iii) the lack of geometric scaling behaviour. The two last features have been seen in numerical attempts to solve the Odderon equation.
89 - A. Baltz , G. Baur , S.J. Brodsky 2007
We present the mini-proceedings of the workshop on ``Photoproduction at collider energies: from RHIC and HERA to the LHC held at the European Centre for Theoretical Studies in Nuclear Physics and Related Areas (ECT*, Trento) from January 15 to 19, 20 07. The workshop gathered both theorists and experimentalists to discuss the current status of investigations of high-energy photon-induced processes at different colliders (HERA, RHIC, and Tevatron) as well as preparations for extension of these studies at the LHC. The main physics topics covered were: (i) small-$x$ QCD in photoproduction studies with protons and in electromagnetic (aka. ultraperipheral) nucleus-nucleus collisions, (ii) hard diffraction physics at hadron colliders, and (iii) photon-photon collisions at very high energies: electroweak and beyond the Standard Model processes. These mini-proceedings consist of an introduction and short summaries of the talks presented at the meeting.
Extensions of the Standard Model that include vector-like quarks commonly also include additional particles that may mediate new production or decay modes. Using as example the minimal linear $sigma$ model, that reduces to the minimal $SO(5)/SO(4)$ c omposite Higgs model in a specific limit, we consider the phenomenology of vector-like quarks when a scalar singlet $sigma$ is present. This new particle may be produced in the decays $T to t sigma$, $B to b sigma$, where $T$ and $B$ are vector-like quarks of charges $2/3$ and $-1/3$, respectively, with subsequent decay $sigma to W^+ W^-, ZZ, hh$. By scanning over the allowed parameter space we find that these decays may be dominant. In addition, we find that the presence of several new particles allows for single $T$ production cross sections larger than those expected in minimal models. We discuss the observability of these new signatures in existing searches.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا