ﻻ يوجد ملخص باللغة العربية
The advent of computing resources with co-processors, for example Graphics Processing Units (GPU) or Field-Programmable Gate Arrays (FPGA), for use cases like the CMS High-Level Trigger (HLT) or data processing at leadership-class supercomputers imposes challenges for the current data processing frameworks. These challenges include developing a model for algorithms to offload their computations on the co-processors as well as keeping the traditional CPU busy doing other work. The CMS data processing framework, CMSSW, implements multithreading using the Intel Threading Building Blocks (TBB) library, that utilizes tasks as concurrent units of work. In this paper we will discuss a generic mechanism to interact effectively with non-CPU resources that has been implemented in CMSSW. In addition, configuring such a heterogeneous system is challenging. In CMSSW an application is configured with a configuration file written in the Python language. The algorithm types are part of the configuration. The challenge therefore is to unify the CPU and co-processor settings while allowing their implementations to be separate. We will explain how we solved these challenges while minimizing the necessary changes to the CMSSW framework. We will also discuss on a concrete example how algorithms would offload work to NVIDIA GPUs using directly the CUDA API.
Starting in the middle of November 2002, the CMS experiment undertook an evaluation of the European DataGrid Project (EDG) middleware using its event simulation programs. A joint CMS-EDG task force performed a stress test by submitting a large number
Modern high-energy physics (HEP) enterprises, such as the Belle II experiment at the KEK laboratory in Japan, create huge amounts of data. Sophisticated algorithms for simulation, reconstruction, visualization, and analysis are required to fully expl
An outreach effort has started at Michigan State University to bring particle physics, the Large Hadron Collider, and the ATLAS experiment to a general audience at the Abrams planetarium on the MSU campus. A team of undergraduate students majoring in
Particle physics has an ambitious and broad experimental programme for the coming decades. This programme requires large investments in detector hardware, either to build new facilities and experiments, or to upgrade existing ones. Similarly, it requ
In modern High Energy Physics (HEP) experiments visualization of experimental data has a key role in many activities and tasks across the whole data chain: from detector development to monitoring, from event generation to reconstruction of physics ob