ﻻ يوجد ملخص باللغة العربية
The binary neural network, largely saving the storage and computation, serves as a promising technique for deploying deep models on resource-limited devices. However, the binarization inevitably causes severe information loss, and even worse, its discontinuity brings difficulty to the optimization of the deep network. To address these issues, a variety of algorithms have been proposed, and achieved satisfying progress in recent years. In this paper, we present a comprehensive survey of these algorithms, mainly categorized into the native solutions directly conducting binarization, and the optimized ones using techniques like minimizing the quantization error, improving the network loss function, and reducing the gradient error. We also investigate other practical aspects of binary neural networks such as the hardware-friendly design and the training tricks. Then, we give the evaluation and discussions on different tasks, including image classification, object detection and semantic segmentation. Finally, the challenges that may be faced in future research are prospected.
Compared to Multilayer Neural Networks with real weights, Binary Multilayer Neural Networks (BMNNs) can be implemented more efficiently on dedicated hardware. BMNNs have been demonstrated to be effective on binary classification tasks with Expectatio
Neural networks are usually over-parameterized with significant redundancy in the number of required neurons which results in unnecessary computation and memory usage at inference time. One common approach to address this issue is to prune these big
Computation using brain-inspired spiking neural networks (SNNs) with neuromorphic hardware may offer orders of magnitude higher energy efficiency compared to the current analog neural networks (ANNs). Unfortunately, training SNNs with the same number
We seek to investigate the scalability of neuromorphic computing for computer vision, with the objective of replicating non-neuromorphic performance on computer vision tasks while reducing power consumption. We convert the deep Artificial Neural Netw
This paper reviews the overview of the dynamic shortest path routing problem and the various neural networks to solve it. Different shortest path optimization problems can be solved by using various neural networks algorithms. The routing in packet s