ﻻ يوجد ملخص باللغة العربية
Neural networks are usually over-parameterized with significant redundancy in the number of required neurons which results in unnecessary computation and memory usage at inference time. One common approach to address this issue is to prune these big networks by removing extra neurons and parameters while maintaining the accuracy. In this paper, we propose NoiseOut, a fully automated pruning algorithm based on the correlation between activations of neurons in the hidden layers. We prove that adding additional output neurons with entirely random targets results into a higher correlation between neurons which makes pruning by NoiseOut even more efficient. Finally, we test our method on various networks and datasets. These experiments exhibit high pruning rates while maintaining the accuracy of the original network.
Deep neural networks achieve state-of-the-art performance in a variety of tasks by extracting a rich set of features from unstructured data, however this performance is closely tied to model size. Modern techniques for inducing sparsity and reducing
The binary neural network, largely saving the storage and computation, serves as a promising technique for deploying deep models on resource-limited devices. However, the binarization inevitably causes severe information loss, and even worse, its dis
The human visual system is remarkably robust against a wide range of naturally occurring variations and corruptions like rain or snow. In contrast, the performance of modern image recognition models strongly degrades when evaluated on previously unse
State-of-the-art deep neural networks have achieved impressive results on many image classification tasks. However, these same architectures have been shown to be unstable to small, well sought, perturbations of the images. Despite the importance of
Computation using brain-inspired spiking neural networks (SNNs) with neuromorphic hardware may offer orders of magnitude higher energy efficiency compared to the current analog neural networks (ANNs). Unfortunately, training SNNs with the same number