ﻻ يوجد ملخص باللغة العربية
This paper introduces control barrier functions for discrete-time systems, which can be shown to be necessary and sufficient for controlled invariance of a given set. Moreover, we propose nonlinear discrete-time control barrier functions for partially control affine systems that lead to controlled invariance conditions that are affine in the control input, leading to a tractable formulation that enables us to handle the safety optimal control problem for a broader range of applications with more complicated safety conditions than existing approaches. In addition, we develop mixed-integer formulations for basic and secondary Boolean compositions of multiple control barrier functions and further provide mixed-integer constraints for piecewise control barrier functions. Finally, we apply these discrete-time control barrier function tools to automotive safety problems of lane keeping and obstacle avoidance, which are shown to be effective in simulation.
Developing controllers for obstacle avoidance between polytopes is a challenging and necessary problem for navigation in a tight space. Traditional approaches can only formulate the obstacle avoidance problem as an offline optimization problem. To ad
Artificial potential fields (APFs) and their variants have been a staple for collision avoidance of mobile robots and manipulators for almost 40 years. Its model-independent nature, ease of implementation, and real-time performance have played a larg
Control barrier functions have shown great success in addressing control problems with safety guarantees. These methods usually find the next safe control input by solving an online quadratic programming problem. However, model uncertainty is a big c
In this paper, we introduce the notion of periodic safety, which requires that the system trajectories periodically visit a subset of a forward-invariant safe set, and utilize it in a multi-rate framework where a high-level planner generates a refere
In this paper we present a multi-rate control architecture for safety critical systems. We consider a high level planner and a low level controller which operate at different frequencies. This multi-rate behavior is described by a piecewise nonlinear