ﻻ يوجد ملخص باللغة العربية
We prove Prices law with an explicit leading order term for solutions $phi(t,x)$ of the scalar wave equation on a class of stationary asymptotically flat $(3+1)$-dimensional spacetimes including subextremal Kerr black holes. Our precise asymptotics in the full forward causal cone imply in particular that $phi(t,x)=c t^{-3}+mathcal O(t^{-4+})$ for bounded $|x|$, where $cinmathbb C$ is an explicit constant. This decay also holds along the event horizon on Kerr spacetimes and thus renders a result by Luk-Sbierski on the linear scalar instability of the Cauchy horizon unconditional. We moreover prove inverse quadratic decay of the radiation field, with explicit leading order term. We establish analogous results for scattering by stationary potentials with inverse cubic spatial decay. On the Schwarzschild spacetime, we prove pointwise $t^{-2 l-3}$ decay for waves with angular frequency at least $l$, and $t^{-2 l-4}$ decay for waves which are in addition initially static. This definitively settles Prices law for linear scalar waves in full generality. The heart of the proof is the analysis of the resolvent at low energies. Rather than constructing its Schwartz kernel explicitly, we proceed more directly using the geometric microlocal approach to the limiting absorption principle pioneered by Melrose and recently extended to the zero energy limit by Vasy.
We obtain estimates on the rate of decay of a solution to the wave equation on a stationary spacetime that tends to Minkowski space at a rate $O(lvert x rvert^{-kappa}),$ $kappa in (1,infty) backslash mathbb{N}.$ Given suitably smooth and decaying in
We prove that Maxwell fields of asymptotically flat solutions of the Einstein-Maxwell equations inherit the stationarity of the metric.
We prove microlocal estimates at the trapped set of asymptotically Kerr spacetimes: these are spacetimes whose metrics decay inverse polynomially in time to a stationary subextremal Kerr metric. This combines two independent results. The first one is
We use planar coordinates as well as hyperbolic coordinates to separate the de Sitter spacetime into two parts. These two ways of cutting the de Sitter give rise to two different spatial infinities. For spacetimes which are asymptotic to either half
We consider the hyperboloidal initial value problem for the cubic focusing wave equation. Without symmetry assumptions, we prove the existence of a co-dimension 4 Lipschitz manifold of initial data that lead to global solutions in forward time which do not scatter to free waves.