ترغب بنشر مسار تعليمي؟ اضغط هنا

Normally hyperbolic trapping on asymptotically stationary spacetimes

69   0   0.0 ( 0 )
 نشر من قبل Peter Hintz
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English
 تأليف Peter Hintz




اسأل ChatGPT حول البحث

We prove microlocal estimates at the trapped set of asymptotically Kerr spacetimes: these are spacetimes whose metrics decay inverse polynomially in time to a stationary subextremal Kerr metric. This combines two independent results. The first one is purely dynamical: we show that the stable and unstable manifolds of a decaying perturbation of a time-translation-invariant dynamical system with normally hyperbolic trapping are smooth and decay to their stationary counterparts. The second, independent, result provides microlocal estimates for operators whose null-bicharacteristic flow has a normally hyperbolic invariant manifold, under suitable non-degeneracy conditions on the stable and unstable manifolds; this includes operators on closed manifolds, as well as operators on spacetimes for which the invariant manifold lies at future infinity.



قيم البحث

اقرأ أيضاً

We obtain estimates on the rate of decay of a solution to the wave equation on a stationary spacetime that tends to Minkowski space at a rate $O(lvert x rvert^{-kappa}),$ $kappa in (1,infty) backslash mathbb{N}.$ Given suitably smooth and decaying in itial data, we show a wave locally enjoys the decay rate $O(t^{-kappa-2+epsilon})$.
We provide reversed Strichartz estimates for the shifted wave equations on non-trapping asymptotically hyperbolic manifolds using cluster estimates for spectral projectors proved previously in such generality. As a consequence, we solve a problem lef t open in cite{SSWZ} about the endpoint case for global well-posedness of nonlinear wave equations. We also provide estimates in this context for the maximal wave operator.
In a recent work the first named author, Levitin and Vassiliev have constructed the wave propagator on a closed Riemannian manifold $M$ as a single oscillatory integral global both in space and in time with a distinguished complex-valued phase functi on. In this paper, first we give a natural reinterpretation of the underlying algorithmic construction in the language of ultrastatic Lorentzian manifolds. Subsequently we show that the construction carries over to the case of static backgrounds thanks to a suitable reduction to the ultrastatic scenario. Finally we prove that the overall procedure can be generalised to any globally hyperbolic spacetime with compact Cauchy surfaces. As an application, we discuss how, from our procedure, one can recover the local Hadamard expansion which plays a key role in all applications in quantum field theory on curved backgrounds.
We prove that both the Laplacian on functions, and the Lichnerowicz Laplacian on symmetric 2-tensors with respect to asymptotically hyperbolic metrics, are sectorial maps in weighted Holder spaces. As an application, the machinery of analytic semigro ups then applies to yield well-posedness results for parabolic evolution equations in these spaces.
84 - Peter Hintz 2020
We prove Prices law with an explicit leading order term for solutions $phi(t,x)$ of the scalar wave equation on a class of stationary asymptotically flat $(3+1)$-dimensional spacetimes including subextremal Kerr black holes. Our precise asymptotics i n the full forward causal cone imply in particular that $phi(t,x)=c t^{-3}+mathcal O(t^{-4+})$ for bounded $|x|$, where $cinmathbb C$ is an explicit constant. This decay also holds along the event horizon on Kerr spacetimes and thus renders a result by Luk-Sbierski on the linear scalar instability of the Cauchy horizon unconditional. We moreover prove inverse quadratic decay of the radiation field, with explicit leading order term. We establish analogous results for scattering by stationary potentials with inverse cubic spatial decay. On the Schwarzschild spacetime, we prove pointwise $t^{-2 l-3}$ decay for waves with angular frequency at least $l$, and $t^{-2 l-4}$ decay for waves which are in addition initially static. This definitively settles Prices law for linear scalar waves in full generality. The heart of the proof is the analysis of the resolvent at low energies. Rather than constructing its Schwartz kernel explicitly, we proceed more directly using the geometric microlocal approach to the limiting absorption principle pioneered by Melrose and recently extended to the zero energy limit by Vasy.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا