ﻻ يوجد ملخص باللغة العربية
Translation models based on hierarchical phrase-based statistical machine translation (HSMT) have shown better performances than the non-hierarchical phrase-based counterparts for some language pairs. The standard approach to HSMT learns and apply a synchronous context-free grammar with a single non-terminal. The hypothesis behind the grammar refinement algorithm presented in this work is that this single non-terminal is overloaded, and insufficiently discriminative, and therefore, an adequate split of it into more specialised symbols could lead to improved models. This paper presents a method to learn synchronous context-free grammars with a huge number of initial non-terminals, which are then grouped via a clustering algorithm. Our experiments show that the resulting smaller set of non-terminals correctly capture the contextual information that makes it possible to statistically significantly improve the BLEU score of the standard HSMT approach.
This paper proposes the use of ``pattern-based context-free grammars as a basis for building machine translation (MT) systems, which are now being adopted as personal tools by a broad range of users in the cyberspace society. We discuss major require
In this paper, we propose Neural Phrase-to-Phrase Machine Translation (NP$^2$MT). Our model uses a phrase attention mechanism to discover relevant input (source) segments that are used by a decoder to generate output (target) phrases. We also design
In this paper, we present Neural Phrase-based Machine Translation (NPMT). Our method explicitly models the phrase structures in output sequences using Sleep-WAke Networks (SWAN), a recently proposed segmentation-based sequence modeling method. To mit
Neural machine translation (NMT) is sensitive to domain shift. In this paper, we address this problem in an active learning setting where we can spend a given budget on translating in-domain data, and gradually fine-tune a pre-trained out-of-domain N
Probabilistic context-free grammars (PCFGs) with neural parameterization have been shown to be effective in unsupervised phrase-structure grammar induction. However, due to the cubic computational complexity of PCFG representation and parsing, previo