ﻻ يوجد ملخص باللغة العربية
Photon absorption in a semiconductor produces bright excitons that recombine very fast into photons. We here show that in a quantum dot set close to a p-doped reservoir, this absorption can produce a dark duo, i.e., an electron-hole pair that does not emit light. This unexpected effect relies on the fact that the wave function for a hole leaks out of a finite-barrier dot less than for electron. This difference can render the positively charged trio unstable in the dot by tuning the applied bias voltage in a field-effect device. The unstable trio that would result from photon absorption in a positively charged dot, has to eject one of its two holes. The remaining duo can be made dark with a probability close to 100% after a few pumping cycles with linearly polarized photons, in this way engineering long-lived initial states for quantum information processing.
Optical and electronic phenomena in solids arise from the behaviour of electrons and holes (unoccupied states in a filled electron sea). Electron-hole symmetry can often be invoked as a simplifying description, which states that electrons with energy
We demonstrate fast initialization of a single hole spin captured in an InGaAs quantum dot with a fidelity F>99% by applying a magnetic field parallel to the growth direction. We show that the fidelity of the hole spin, prepared by ionization of a ph
Quantum dots inserted inside semiconductor nanowires are extremely promising candidates as building blocks for solid-state based quantum computation and communication. They provide very high crystalline and optical properties and offer a convenient g
The ground state of neutral and negatively charged excitons confined to a single self-assembled InGaAs quantum dot is probed in a direct absorption experiment by high resolution laser spectroscopy. We show how the anisotropic electron-hole exchange i
We report transport measurements on a semiconductor quantum dot with a small number of confined electrons. In the Coulomb blockade regime, conduction is dominated by cotunneling processes. These can be either elastic or inelastic, depending on whethe