ترغب بنشر مسار تعليمي؟ اضغط هنا

Electron Cotunneling in a Semiconductor Quantum Dot

105   0   0.0 ( 0 )
 نشر من قبل Silvano De Franceschi
 تاريخ النشر 2000
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report transport measurements on a semiconductor quantum dot with a small number of confined electrons. In the Coulomb blockade regime, conduction is dominated by cotunneling processes. These can be either elastic or inelastic, depending on whether they leave the dot in its ground state or drive it into an excited state, respectively. We are able to discriminate between these two contributions and show that inelastic events can occur only if the applied bias exceeds the lowest excitation energy. Implications to energy-level spectroscopy are discussed.



قيم البحث

اقرأ أيضاً

275 - B. Kung , C. Rossler , M. Beck 2012
We present comparative measurements of the charge occupation and conductance of a GaAs/AlGaAs quantum dot. The dot charge is measured with a capacitively coupled quantum point contact sensor. In the single-level Coulomb blockade regime near equilibri um, charge and conductance signals are found to be proportional to each other. We conclude that in this regime, the two signals give equivalent information about the quantum dot system. Out of equilibrium, we study the inelastic-cotunneling regime. We compare the measured differential dot charge with an estimate assuming a dwell time of transmitted carriers on the dot given by h/E, where E is the blockade energy of first-order tunneling. The measured signal is of a similar magnitude as the estimate, compatible with a picture of cotunneling as transmission through a virtual intermediate state with a short lifetime.
Interacting fermions on a lattice can develop strong quantum correlations, which lie at the heart of the classical intractability of many exotic phases of matter. Seminal efforts are underway in the control of artificial quantum systems, that can be made to emulate the underlying Fermi-Hubbard models. Electrostatically confined conduction band electrons define interacting quantum coherent spin and charge degrees of freedom that allow all-electrical pure-state initialisation and readily adhere to an engineerable Fermi-Hubbard Hamiltonian. Until now, however, the substantial electrostatic disorder inherent to solid state has made attempts at emulating Fermi-Hubbard physics on solid-state platforms few and far between. Here, we show that for gate-defined quantum dots, this disorder can be suppressed in a controlled manner. Novel insights and a newly developed semi-automated and scalable toolbox allow us to homogeneously and independently dial in the electron filling and nearest-neighbour tunnel coupling. Bringing these ideas and tools to fruition, we realize the first detailed characterization of the collective Coulomb blockade transition, which is the finite-size analogue of the interaction-driven Mott metal-to-insulator transition. As automation and device fabrication of semiconductor quantum dots continue to improve, the ideas presented here show how quantum dots can be used to investigate the physics of ever more complex many-body states.
We investigate the effects of inelastic cotunneling on the electronic transport properties of gold nanoparticle multilayers and thick films at low applied bias, inside the Coulomb blockade regime. We find that the zero-bias conductance, $g_0(T)$, in all systems exhibits Efros-Shklovskii-type variable range hopping transport. The resulting typical hopping distance, corresponding to the number of tunnel junctions participating in cotunneling events, is shown to be directly related to the power law exponent in the measured current-voltage characteristics. We discuss the implications of these findings in light of models on cotunneling and hopping transport in mesoscopic, granular conductors.
Optical and electronic phenomena in solids arise from the behaviour of electrons and holes (unoccupied states in a filled electron sea). Electron-hole symmetry can often be invoked as a simplifying description, which states that electrons with energy above the Fermi sea behave the same as holes below the Fermi energy. In semiconductors, however, electron-hole symmetry is generally absent since the energy band structure of the conduction band differs from the valence band. Here we report on measurements of the discrete, quantized-energy spectrum of electrons and holes in a semiconducting carbon nanotube. Through a gate, an individual nanotube is filled controllably with a precise number of either electrons or holes, starting from one. The discrete excitation spectrum for a nanotube with N holes is strikingly similar to the corresponding spectrum for N electrons. This observation of near perfect electron-hole symmetry demonstrates for the first time that a semiconducting nanotube can be free of charged impurities, even in the limit of few-electrons or holes. We furthermore find an anomalously small Zeeman spin splitting and an excitation spectrum indicating strong electron-electron interactions.
Electron transport properties in a parallel double-quantum-dot structure with three-terminals are theoretically studied. By introducing a local Rashba spin-orbit coupling, we find that an incident electron from one terminal can select a specific term inal to depart from the quantum dots according to its spin state. As a result, spin polarization and spin separation can be simultaneously realized in this structure. And spin polarizations in different terminals can be inverted by tuning the structure parameters. The underlying quantum interference that gives rise to such a result is analyzed in the language of Feynman paths for the electron transmission.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا