ﻻ يوجد ملخص باللغة العربية
The internal degrees of freedom of fermions are in the spin-charge-family theory described by the Clifford algebra objects, which are superposition of an odd number of $gamma^a$s. Arranged into irreducible representations of eigenvectors of the Cartan subalgebra of the Lorentz algebra $S^{ab}$ $(= frac{i}{2} gamma^a gamma^b|_{a e b})$ these objects form $2^{frac{d}{2}-1}$ families with $2^{frac{d}{2}-1}$ family members each. Family members of each family offer the description of all the observed quarks and leptons and antiquarks and antileptons, appearing in families. Families are reachable by $tilde{S}^{ab}$ $=frac{1}{2} tilde{gamma}^a tilde{gamma}^b|_{a e b}$. Creation operators, carrying the family member and family quantum numbers form the basic vectors. The action of the operators $gamma^a$s, $S^{ab}$, $tilde{gamma}^a$s and $tilde{S}^{ab}$, applying on the basic vectors, manifests as matrices. In this paper the basic vectors in $d=(3+1)$ Clifford space are discussed, chosen in a way that the matrix representations of $gamma^a$ and of $S^{ab}$ coincide for each family quantum number, determined by $tilde{S}^{ab} $, with the Dirac matrices. The appearance of charges in Clifford space is discussed by embedding $d=(3+1)$ space into $d=(5+1)$-dimensional space.
Using condition of relativistic invariance, group theory and Clifford algebra the component Lorentz invariance generalized Dirac equation for a particle with arbitrary mass and spin is suggested, where In the case of half-integral spin particles, thi
Fifty years ago the standard model offered an elegant new step towards understanding elementary fermion and boson fields, making several assumptions, suggested by experiments. The assumptions are still waiting for explanations. There are many proposa
In this paper we give a thoughtful exposition of the hyperbolic Clifford algebra of multivecfors which is naturally associated with a hyperbolic space, whose elements are called vecfors. Geometrical interpretation of vecfors and multivecfors are give
Conventional quantum field theory (QFT) is set on flat Minkowski spacetime, where all computable quantities are calculated from the flat metric $eta_{mu u}$. We can redefine the metric of spacetime from the Dirac algebra. In this paper, we study how
We discuss the structure of the Dirac equation and how the nilpotent and the Majorana operators arise naturally in this context. This provides a link between Kauffmans work on discrete physics, iterants and Majorana Fermions and the work on nilpotent