ﻻ يوجد ملخص باللغة العربية
In order to anticipate rare and impactful events, we propose to quantify the worst-case risk under distributional ambiguity using a recent development in kernel methods -- the kernel mean embedding. Specifically, we formulate the generalized moment problem whose ambiguity set (i.e., the moment constraint) is described by constraints in the associated reproducing kernel Hilbert space in a nonparametric manner. We then present the tractable approximation and its theoretical justification. As a concrete application, we numerically test the proposed method in characterizing the worst-case constraint violation probability in the context of a constrained stochastic control system.
This paper studies distributionally robust optimization (DRO) when the ambiguity set is given by moments for the distributions. The objective and constraints are given by polynomials in decision variables. We reformulate the DRO with equivalent momen
This paper introduces for the first time a framework to obtain provable worst-case guarantees for neural network performance, using learning for optimal power flow (OPF) problems as a guiding example. Neural networks have the potential to substantial
We propose to analyse the conditional distributional treatment effect (CoDiTE), which, in contrast to the more common conditional average treatment effect (CATE), is designed to encode a treatments distributional aspects beyond the mean. We first int
This work provides analysis of a variant of the Risk-Sharing Principal-Agent problem in a single period setting with additional constant lower and upper bounds on the wage paid to the Agent. First the effect of the extra constraints on optimal contra
Flow routing over inter-datacenter networks is a well-known problem where the network assigns a path to a newly arriving flow potentially according to the network conditions and the properties of the new flow. An essential system-wide performance met