ﻻ يوجد ملخص باللغة العربية
We suggest a dynamical vector model of entanglement in a three qubit system based on isomorphism between $su(4)$ and $so(6)$ Lie algebras. Generalizing Plucker-type description of three-qubit local invariants we introduce three pairs of real-valued $3D$ vector (denoted here as $A_{R,I}$ , $B_{R,I}$ and $C_{R,I}$). Magnitudes of these vectors determine two- and three-qubit entanglement parameters of the system. We show that evolution of vectors $A$, $B$ , $C$ under local $SU(2)$ operations is identical to $SO(3)$ evolution of single-qubit Bloch vectors of qubits $a$, $b$ and $c$ correspondingly. At the same time, general two-qubit $su(4)$ Hamiltonians incorporating $a-b$, $a-c$ and $b-c$ two-qubit coupling terms generate $SO(6)$ coupling between vectors $A$ and $B$, $A$ and $C$, and $B$ and $C$, correspondingly. It turns out that dynamics of entanglement induced by different two-qubit coupling terms is entirely determined by mutual orientation of vectors $A$, $B$, $C$ which can be controlled by single-qubit transformations. We illustrate the power of this vector description of entanglement by solving quantum control problems involving transformations between $W$, Greenberg-Horne-Zeilinger ($GHZ$ ) and biseparable states.
Geometric quantum mechanics aims to express the physical properties of quantum systems in terms of geometrical features preferentially selected in the space of pure states. Geometric characterisations are given here for systems of one, two, and three
We study the evolution of qubits amplitudes in a one-dimensional chain consisting of three equidistantly spaced noninteracting qubits embedded in an open waveguide. The study is performed in the frame of single-excitation subspace, where the only qub
We study the degree to which quantum entanglement survives when a three-qubit entangled state is copied by using local and non-local processes, respectively, and investigate iterating quantum copying for the three-qubit system. There may exist inter-
A central theme in quantum information science is to coherently control an increasing number of quantum particles as well as their internal and external degrees of freedom (DoFs), meanwhile maintaining a high level of coherence. The ability to create
Quantum reservoir engineering is a powerful framework for autonomous quantum state preparation and error correction. However, traditional approaches to reservoir engineering are hindered by unavoidable coherent leakage out of the target state, which