ترغب بنشر مسار تعليمي؟ اضغط هنا

Trade off-Free Entanglement Stabilization in a Superconducting Qutrit-Qubit System

134   0   0.0 ( 0 )
 نشر من قبل Leonardo Ranzani
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Quantum reservoir engineering is a powerful framework for autonomous quantum state preparation and error correction. However, traditional approaches to reservoir engineering are hindered by unavoidable coherent leakage out of the target state, which imposes an inherent trade off between achievable steady-state state fidelity and stabilization rate. In this work we demonstrate a protocol that achieves trade off-free Bell state stabilization in a qutrit-qubit system realized on a circuit-QED platform. We accomplish this by creating a purely dissipative channel for population transfer into the target state, mediated by strong parametric interactions coupling the second-excited state of a superconducting transmon and the engineered bath resonator. Our scheme achieves a state preparation fidelity of 84% with a stabilization time constant of 339 ns, leading to the lowest error-time product reported in solid-state quantum information platforms to date.



قيم البحث

اقرأ أيضاً

The rapid development in designs and fabrication techniques of superconducting qubits has helped making coherence times of qubits longer. In the near future, however, the radiative decay of a qubit into its control line will be a fundamental limitati on, imposing a trade-off between fast control and long lifetime of the qubit. In this work, we successfully break this trade-off by strongly coupling another superconducting qubit along the control line. This second qubit, which we call a Josephson quantum filter (JQF), prevents the qubit from emitting microwave photons and thus suppresses its relaxation, while faithfully transmitting large-amplitude control microwave pulses due to the saturation of the quantum filter, enabling fast qubit control. We observe an improvement of the qubit relaxation time without a reduction of the Rabi frequency. This device could potentially help in the realization of a large-scale superconducting quantum information processor in terms of the heating of the qubit environments and the crosstalk between qubits.
161 - Li-Jun Tian , Li-Guo Qin , 2009
We study thermal entanglement in a two-superconducting-qubit system in two cases, either identical or distinct. By calculating the concurrence of system, we find that the entangled degree of the system is greatly enhanced in the case of very low temp erature and Josephson energies for the identical superconducting qubits, and our result is in a good agreement with the experimental data.
Building a quantum computer is a daunting challenge since it requires good control but also good isolation from the environment to minimize decoherence. It is therefore important to realize quantum gates efficiently, using as few operations as possib le, to reduce the amount of required control and operation time and thus improve the quantum state coherence. Here we propose a superconducting circuit for implementing a tunable system consisting of a qutrit coupled to two qubits. This system can efficiently accomplish various quantum information tasks, including generation of entanglement of the two qubits and conditional three-qubit quantum gates, such as the Toffoli and Fredkin gates. Furthermore, the system realizes a conditional geometric gate which may be used for holonomic (non-adiabatic) quantum computing. The efficiency, robustness and universality of the presented circuit makes it a promising candidate to serve as a building block for larger networks capable of performing involved quantum computational tasks.
Towards realising larger scale quantum algorithms, the ability to prepare sizeable multi-qubit entangled states with full qubit control is used as a benchmark for quantum technologies. We investigate the extent to which entanglement is found within a prepared graph state on the 20-qubit superconducting quantum computer, IBM Q Poughkeepsie. We prepared a graph state along a path consisting of all twenty qubits within Poughkeepsie and performed full quantum state tomography on all groups of four connected qubits along this path. We determined that each pair of connected qubits was inseparable and hence the prepared state was entangled. Additionally, a genuine multipartite entanglement witness was measured on all qubit subpaths of the graph state and we found genuine multipartite entanglement on chains of up to three qubits.
We investigate the nonlocality distributions among multiqubit systems based on the maximal violations of the Clauser-Horne-Shimony-Holt (CHSH) inequality of reduced pairwise qubit systems. We present a trade-off relation satisfied by these maximal vi olations, which gives rise to restrictions on the distribution of nonlocality among the subqubit systems. For a three-qubit system, it is impossible that all pairs of qubits violate the CHSH inequality, and once a pair of qubits violates the CHSH inequality maximally, the other two pairs of qubits must both obey the CHSH inequality. Detailed examples are given to illustrate the trade-off relations, and the trade-off relations are generalized to arbitrary multiqubit systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا