ﻻ يوجد ملخص باللغة العربية
Quantum criticality has been invoked as being essential to the understanding of a wide range of exotic electronic behavior, including heavy Fermion and unconventional superconductivity, but conclusive evidence of quantum critical fluctuations has been elusive in many materials of current interest. An expected characteristic feature of quantum criticality is power law behavior of thermodynamic quantities as a function of a non-thermal tuning parameter close to the quantum critical point (QCP). In the present work, we observe power law behavior of the critical temperature of the coupled nematic/structural phase transition as a function of uniaxial stress in a representative family of Fe-based superconductors. Our measurements provide direct evidence of quantum critical nematic fluctuations in this material. Furthermore, these quantum critical fluctuations are not confined within a narrow regime around the QCP, but extend over a wide range of temperatures and tuning parameters.
Theoretically, it is commonly held that in metals near a nematic quantum critical point the electronic excitations become incoherent on the entire `hot Fermi surface, triggering non Fermi liquid behavior. However, such conclusions are based on electr
Many unconventional superconductors exhibit a common set of anomalous charge transport properties that characterize them as `strange metals, which provides hope that there is single theory that describes them. However, model-independent connections b
In the iron-based superconductors, both nematic and magnetic fluctuations are expected to enhance superconductivity and may originate from a quantum critical point hidden beneath the superconducting dome. The behavior of the non-superconducting state
We discuss a series of thermodynamic, magnetic and electrical transport experiments on the two heavy fermion compounds CeNi2Ge2 and YbRh2Si2 in which magnetic fields, B, are used to tune the systems from a Non-Fermi liquid (NFL) into a field-induced
We have investigated the spin dynamics in the bilayered perovskite Sr3Ru2O7 as a function of magnetic field and temperature using 17O-NMR. This system sits close to a metamagnetic quantum critical point (MMQCP) for the field perpendicular to the ruth