ﻻ يوجد ملخص باللغة العربية
An experimentally feasible energy-storage concept is formulated based on vorticity (hydro)dynamics within an easy-plane insulating magnet. The free energy, associated with the magnetic winding texture, is built up in a circular easy-plane magnetic structure by injecting a vorticity flow in the radial direction. The latter is accomplished by electrically induced spin-transfer torque, which pumps energy into the magnetic system in proportion to the vortex flux. The resultant magnetic metastable state with a finite winding number can be maintained for a long time because the process of its relaxation via phase slips is exponentially suppressed when the temperature is well below the Curie temperature. We propose to characterize the vorticity-current interaction underlying the energy-loading mechanism through its contribution to the effective electric inductance in the rf response. Our proposal may open an avenue for naturally powering spintronic circuits and nontraditional magnet-based neuromorphic networks.
In the quest to image the three-dimensional magnetization structure we show that the technique of magnetic small-angle neutron scattering (SANS) is highly sensitive to the details of the internal spin structure of nanoparticles. By combining SANS wit
The scientific and technological exploration of artificially designed three-dimensional magnetic nanostructures opens the path to exciting novel physical phenomena, originating from the increased complexity in spin textures, topology, and frustration
Topologically distinct magnetic structures like skyrmions, domain walls, and the uniformly magnetized state have multiple applications in logic devices, sensors, and as bits of information. One of the most promising concepts for applying these bits i
We present an in-depth classification of the topological phases and Majorana fermion (MF) excitations that arise from the bulk interplay between unconventional multiband spin-singlet superconductivity and various magnetic textures. We focus on magnet
We provide a general procedure to calculate the current-induced spin-transfer torque which acts on a general steep magnetic texture due to the exchange interaction with an applied spin-polarized current. As an example, we consider a one-dimensional f