ترغب بنشر مسار تعليمي؟ اضغط هنا

A study of COVID-19 data from African countries

99   0   0.0 ( 0 )
 نشر من قبل Ketevi A. Assamagan
 تاريخ النشر 2020
  مجال البحث علم الأحياء فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

COVID-19 is a new pandemic disease that is affecting almost every country with a negative impact on social life and economic activities. The number of infected and deceased patients continues to increase globally. Mathematical models can help in developing better strategies to contain a pandemic. Considering multiple measures taken by African governments and challenging socio-economic factors, simple models cannot fit the data. We studied the dynamical evolution of COVID-19 in selected African countries. We derived a time-dependent reproduction number for each country studied to offer further insights into the spread of COVID-19 in Africa.



قيم البحث

اقرأ أيضاً

We studied the COVID-19 pandemic evolution in selected African countries. For each country considered, we modeled simultaneously the data of the active, recovered and death cases. In this study, we used a year of data since the first cases were repor ted. We estimated the time-dependent basic reproduction numbers, $R_0$, and the fractions of infected but unaffected populations, to offer insights into containment and vaccine strategies in African countries. We found that $R_0leq 4$ at the start of the pandemic but has since fallen to $R_0 sim 1$. The unaffected fractions of the populations studied vary between $1-10$% of the recovered cases.
130 - L.E. Olivier , I.K. Craig 2020
An epidemiological model is developed for the spread of COVID-19 in South Africa. A variant of the classical compartmental SEIR model, called the SEIQRDP model, is used. As South Africa is still in the early phases of the global COVID-19 pandemic wit h the confirmed infectious cases not having peaked, the SEIQRDP model is first parameterized on data for Germany, Italy, and South Korea - countries for which the number of infectious cases are well past their peaks. Good fits are achieved with reasonable predictions of where the number of COVID-19 confirmed cases, deaths, and recovered cases will end up and by when. South African data for the period from 23 March to 8 May 2020 is then used to obtain SEIQRDP model parameters. It is found that the model fits the initial disease progression well, but that the long-term predictive capability of the model is rather poor. The South African SEIQRDP model is subsequently recalculated with the basic reproduction number constrained to reported values. The resulting model fits the data well, and long-term predictions appear to be reasonable. The South African SEIQRDP model predicts that the peak in the number of confirmed infectious individuals will occur at the end of October 2020, and that the total number of deaths will range from about 10,000 to 90,000, with a nominal value of about 22,000. All of these predictions are heavily dependent on the disease control measures in place, and the adherence to these measures. These predictions are further shown to be particularly sensitive to parameters used to determine the basic reproduction number. The future aim is to use a feedback control approach together with the South African SEIQRDP model to determine the epidemiological impact of varying lockdown levels proposed by the South African Government.
128 - R. Jayatilaka , R. Patel , M. Brar 2021
Disease transmission is studied through disciplines like epidemiology, applied mathematics, and statistics. Mathematical simulation models for transmission have implications in solving public and personal health challenges. The SIR model uses a compa rtmental approach including dynamic and nonlinear behavior of transmission through three factors: susceptible, infected, and removed (recovered and deceased) individuals. Using the Lambert W Function, we propose a framework to study solutions of the SIR model. This demonstrates the applications of COVID-19 transmission data to model the spread of a real-world disease. Different models of disease including the SIR, SIRm and SEIR model are compared with respect to their ability to predict disease spread. Physical distancing impacts and personal protection equipment use will be discussed in relevance to the COVID-19 spread.
In late-2020, many countries around the world faced another surge in number of confirmed cases of COVID-19, including United Kingdom, Canada, Brazil, United States, etc., which resulted in a large nationwide and even worldwide wave. While there have been indications that precaution fatigue could be a key factor, no scientific evidence has been provided so far. We used a stochastic metapopulation model with a hierarchical structure and fitted the model to the positive cases in the US from the start of outbreak to the end of 2020. We incorporated non-pharmaceutical interventions (NPIs) into this model by assuming that the precaution strength grows with positive cases and studied two types of pandemic fatigue. We found that people in most states and in the whole US respond to the outbreak in a sublinear manner (with exponent k=0.5), while only three states (Massachusetts, New York and New Jersey) have linear reaction (k=1). Case fatigue (decline in peoples vigilance to positive cases) is responsible for 58% of cases, while precaution fatigue (decay of maximal fraction of vigilant group) accounts for 26% cases. If there were no pandemic fatigue (no case fatigue and no precaution fatigue), total positive cases would have reduced by 68% on average. Our study shows that pandemic fatigue is the major cause of the worsening situation of COVID-19 in United States. Reduced vigilance is responsible for most positive cases, and higher mortality rate tends to push local people to react to the outbreak faster and maintain vigilant for longer time.
The transmission of COVID-19 is dependent on social contacts, the rate of which have varied during the pandemic due to mandated and voluntary social distancing. Changes in transmission dynamics eventually affect hospital admissions and we have used t his connection in order to model and predict regional hospital admissions in Sweden during the COVID-19 pandemic. We use an SEIR-model for each region in Sweden in which the infectivity is assumed to depend on mobility data in terms of public transport utilisation and mobile phone usage. The results show that the model can capture the timing of the first and beginning of the second wave of the pandemic. Further, we show that for two major regions of Sweden models with public transport data outperform models using mobile phone usage. The model assumes a three week delay from disease transmission to hospitalisation which makes it possible to use current mobility data to predict future admissions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا