ﻻ يوجد ملخص باللغة العربية
Ionic flow carries electrical signals for cells to communicate with each other. The permanent charge of an ion channel is a crucial protein structure for flow properties while boundary conditions play a role of the driving force. Their effects on flow properties have been analyzed via a quasi-one-dimensional Poisson-Nernst-Planck model for small and relatively large permanent charges. The analytical studies have led to the introduction of flux ratios that reflect permanent charge effects and have a universal property. The studies also show that the flux ratios have different behaviors for small and large permanent charges. However, the existing analytical techniques can reveal neither behaviors of flux ratios nor transitions between small and large permanent charges. In this work we present a numerical investigation on flux ratios to bridge between small and large permanent charges. Numerical results verify the analytical predictions for the two extremal regions. More significantly, emergence of non-trivial behaviors is detected as the permanent charge varies from small to large. In particular, saddle-node bifurcations of flux ratios are revealed, showing rich phenomena of permanent charge effects by the power of combining analytical and numerical techniques. An adaptive moving mesh finite element method is used in the numerical studies.
In this paper we consider the numerical solution of Boussinesq-Peregrine type systems by the application of the Galerkin finite element method. The structure of the Boussinesq systems is explained and certain alternative nonlinear and dispersive term
When time-dependent partial differential equations (PDEs) are solved numerically in a domain with curved boundary or on a curved surface, mesh error and geometric approximation error caused by the inaccurate location of vertices and other interior gr
We present two semidiscretizations of the Camassa-Holm equation in periodic domains based on variational formulations and energy conservation. The first is a periodic version of an existing conservative multipeakon method on the real line, for which
In this paper, we study a model for the transport of an external component, e.g., a surfactant, in variably saturated porous media. We discretize the model in time and space by combining a backward Euler method with the linear Galerkin finite element
We explain the setup for using the pde2path libraries for Hopf bifurcation and continuation of branches of periodic orbits and give implementation details of the associated demo directories. See [Uecker, Comm. in Comp. Phys., 2019] for a description