ﻻ يوجد ملخص باللغة العربية
When time-dependent partial differential equations (PDEs) are solved numerically in a domain with curved boundary or on a curved surface, mesh error and geometric approximation error caused by the inaccurate location of vertices and other interior grid points, respectively, could be the main source of the inaccuracy and instability of the numerical solutions of PDEs. The role of these geometric errors in deteriorating the stability and particularly the conservation properties are largely unknown, which seems to necessitate very fine meshes especially to remove geometric approximation error. This paper aims to investigate the effect of geometric approximation error by using a high-order mesh with negligible geometric approximation error, even for high order polynomial of order p. To achieve this goal, the high-order mesh generator from CAD geometry called NekMesh is adapted for surface mesh generation in comparison to traditional meshes with non-negligible geometric approximation error. Two types of numerical tests are considered. Firstly, the accuracy of differential operators is compared for various p on a curved element of the sphere. Secondly, by applying the method of moving frames, four different time-dependent PDEs on the sphere are numerically solved to investigate the impact of geometric approximation error on the accuracy and conservation properties of high-order numerical schemes for PDEs on the sphere.
We develop a numerical method for solving the boundary value problem of The Linear Seventh Ordinary Boundary Value Problem by using seventh degree B-Spline function. Formulation is based on particular terms of order of seventh order boundary value pr
In this work, we consider the Biot problem with uncertain poroelastic coefficients. The uncertainty is modelled using a finite set of parameters with prescribed probability distribution. We present the variational formulation of the stochastic partia
In this paper, an implicit time stepping meshless scheme is proposed to find the numerical solution of high-dimensional sine-Gordon equations (SGEs) by combining the high dimensional model representation (HDMR) and the Fourier hyperbolic cross (HC) a
We propose a numerical method to approximate the scattering amplitudes for the elasticity system with a non-constant matrix potential in dimensions $d=2$ and $3$. This requires to approximate first the scattering field, for some incident waves, which
In this article we study the numerical solution of the $L^1$-Optimal Transport Problem on 2D surfaces embedded in $R^3$, via the DMK formulation introduced in [FaccaCardinPutti:2018]. We extend from the Euclidean into the Riemannian setting the DMK m