ﻻ يوجد ملخص باللغة العربية
The models and weights of prior trained Convolutional Neural Networks (CNN) created to perform automated isotopic classification of time-sequenced gamma-ray spectra, were utilized to provide source domain knowledge as training on new domains of potential interest. The previous results were achieved solely using modeled spectral data. In this work we attempt to transfer the knowledge gained to the new, if similar, domain of solely measured data. The ability to train on modeled data and predict on measured data will be crucial in any successful data-driven approach to this problem space.
Pions constitute nearly $70%$ of final state particles in ultra high energy collisions. They act as a probe to understand the statistical properties of Quantum Chromodynamics (QCD) matter i.e. Quark Gluon Plasma (QGP) created in such relativistic hea
Rapidly applying the effects of detector response to physics objects (e.g. electrons, muons, showers of particles) is essential in high energy physics. Currently available tools for the transformation from truth-level physics objects to reconstructed
Purpose: To test the feasibility of using deep learning for optical coherence tomography angiography (OCTA) detection of diabetic retinopathy (DR). Methods: A deep learning convolutional neural network (CNN) architecture VGG16 was employed for this s
Gaussian process tomography (GPT) is a method used for obtaining real-time tomographic reconstructions of the plasma emissivity profile in a tokamak, given some model for the underlying physical processes involved. GPT can also be used, thanks to Bay
Deep learning has emerged as a technique of choice for rapid feature extraction across imaging disciplines, allowing rapid conversion of the data streams to spatial or spatiotemporal arrays of features of interest. However, applications of deep learn