ﻻ يوجد ملخص باللغة العربية
Gaussian process tomography (GPT) is a method used for obtaining real-time tomographic reconstructions of the plasma emissivity profile in a tokamak, given some model for the underlying physical processes involved. GPT can also be used, thanks to Bayesian formalism, to perform model selection -- i.e., comparing different models and choosing the one with maximum evidence. However, the computations involved in this particular step may become slow for data with high dimensionality, especially when comparing the evidence for many different models. Using measurements collected by the ASDEX Upgrade Soft X-ray (SXR) diagnostic, we train a convolutional neural network (CNN) to map SXR tomographic projections to the corresponding GPT model whose evidence is highest. We then compare the networks results, and the time required to calculate them, with those obtained through analytical Bayesian formalism. In addition, we use the networks classifications to produce tomographic reconstructions of the plasma emissivity profile, whose quality we evaluate by comparing their projection into measurement space with the existing measurements themselves.
Automatized object identification and feature analysis of experimental image data are indispensable for data-driven material science; deep-learning-based segmentation algorithms have been shown to be a promising technique to achieve this goal. Howeve
Muons are the most abundant charged particles arriving at sea level originating from the decay of secondary charged pions and kaons. These secondary particles are created when high-energy cosmic rays hit the atmosphere interacting with air nuclei ini
Pions constitute nearly $70%$ of final state particles in ultra high energy collisions. They act as a probe to understand the statistical properties of Quantum Chromodynamics (QCD) matter i.e. Quark Gluon Plasma (QGP) created in such relativistic hea
We present a simulation-based study using deep convolutional neural networks (DCNNs) to identify neutrino interaction vertices in the MINERvA passive targets region, and illustrate the application of domain adversarial neural networks (DANNs) in this
Data mining is routinely used to organize ensembles of short temporal observations so as to reconstruct useful, low-dimensional realizations of an underlying dynamical system. In this paper, we use manifold learning to organize unstructured ensembles