ﻻ يوجد ملخص باللغة العربية
We discuss the new surprising observational results that indicate quite convincingly that the prompt emission of Gamma-Ray Bursts (GRBs) is due to synchrotron radiation produced by a particle distribution that has a low energy cut-off. The evidence of this is provided by the low energy part of the spectrum of the prompt emission, that shows the characteristic F(nu) propto nu^(1/3) shape followed by F(nu) propto nu^(-1/2) up to the peak frequency. This implies that although the emitting particles are in fast cooling, they do not cool completely. This poses a severe challenge to the basic ideas about how and where the emission is produced, because the incomplete cooling requires a small value of the magnetic field, to limit synchrotron cooling, and a large emitting region, to limit the self-Compton cooling, even considering Klein-Nishina scattering effects. Some new and fundamental ingredient is required for understanding the GRBs prompt emission. We propose proton-synchrotron as a promising mechanism to solve the incomplete cooling puzzle.
A small fraction of GRBs with available data down to soft X-rays ($sim0.5$ keV) have been shown to feature a spectral break in the low-energy part ($sim1-10$ keV) of their prompt emission spectrum. The overall spectral shape is consistent with optica
Information on the spectral shape of prompt emission in gamma-ray bursts (GRB) is mostly available only at energies $gtrsim10$ keV, where the main instruments for GRB detection are sensitive. The origin of this emission is still very uncertain becaus
Growing evidence indicates that the synchrotron radiation mechanism may be responsible for the prompt emission of gamma-ray bursts (GRBs). In the synchrotron radiation scenario, the electron energy spectrum of the prompt emission is diverse in theore
After more than 40 years from their discovery, the long-lasting tension between predictions and observations of GRBs prompt emission spectra starts to be solved. We found that the observed spectra can be produced by the synchrotron process, if the em
(abridged)Prompt GRB emission is often interpreted as synchrotron radiation from high-energy electrons accelerated in internal shocks. Fast synchrotron cooling predicts that the photon index below the spectral peak is alpha=-3/2. This differs signifi