ترغب بنشر مسار تعليمي؟ اضغط هنا

The observation of vibrating pear shapes in radon nuclei: update

91   0   0.0 ( 0 )
 نشر من قبل Peter Butler
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

There is a large body of evidence that atomic nuclei can undergo octupole distortion and assume the shape of a pear. This phenomenon is important for measurements of electric-dipole moments of atoms, which would indicate CP violation and hence probe physics beyond the standard model of particle physics. Isotopes of both radon and radium have been identified as candidates for such measurements. Here, we have observed the low-lying quantum states in $^{224}$Rn and $^{226}$Rn by accelerating beams of these radioactive nuclei. We report here additional states not assigned in our 2019 publication. We show that radon isotopes undergo octupole vibrations but do not possess static pear-shapes in their ground states. We conclude that radon atoms provide less favourable conditions for the enhancement of a measurable atomic electric-dipole moment.



قيم البحث

اقرأ أيضاً

A new test of Lorentz invariance in the weak interactions has been made by searching for variations in the decay rate of spin-polarized 20Na nuclei. This test is unique to Gamow-Teller transitions, as was shown in the framework of a recently develope d theory that assumes a Lorentz symmetry breaking background field of tensor nature. The nuclear spins were polarized in the up and down direction, putting a limit on the amplitude of sidereal variations of the form |(Gamma_{up} - Gamma_{down})| / (Gamma_{up} + Gamma_{down}) < 3 * 10^{-3}. This measurement shows a possible route toward a more detailed testing of Lorentz symmetry in weak interactions.
We present an update of the event generator based on the three-fluid dynamics (3FD), complemented by Ultra-relativistic Quantum Molecular Dynamics (UrQMD) for the late stage of the nuclear collision~-- the three-fluid Hydrodynamics-based Event Simula tor Extended by UrQMD final State interactions (THESEUS). Two modifications are introduced. The THESEUS table of hadronic resonances is made consistent with that of the underlying 3FD model. The main modification is that the generator is extended to simulate the light-nuclei production in relativistic heavy-ion collisions, on the equal basis with hadrons. These modifications are illustrated by applications to the description of available experimental data. The first run of the updated generator revealed a good reproduction of the NA49 data on the light nuclei. The reproduction is achieved without any extra parameters, while the coalescence approach in 3FD requires special tuning of the coalescence coefficients for each light nucleus separately.
Background: Shape coexistence in heavy nuclei poses a strong challenge to state-of-the-art nuclear models, where several competing shape minima are found close to the ground state. A classic region for investigating this phenomenon is in the region a round $Z=82$ and the neutron mid-shell at $N=104$. Purpose: Evidence for shape coexistence has been inferred from $alpha$-decay measurements, laser spectroscopy and in-beam measurements. While the latter allow the pattern of excited states and rotational band structures to be mapped out, a detailed understanding of shape coexistence can only come from measurements of electromagnetic matrix elements. Method: Secondary, radioactive ion beams of $^{202}$Rn and $^{204}$Rn were studied by means of low-energy Coulomb excitation at the REX-ISOLDE facility in CERN. Results: The electric-quadrupole ($E2$) matrix element connecting the ground state and first-excited $2^{+}_{1}$ state was extracted for both $^{202}$Rn and $^{204}$Rn, corresponding to ${B(E2;2^{+}_{1} to 2^{+}_{1})=29^{+8}_{-8}}$ W.u. and $43^{+17}_{-12}$ W.u., respectively. Additionally, $E2$ matrix elements connecting the $2^{+}_{1}$ state with the $4^{+}_{1}$ and $2^{+}_{2}$ states were determined in $^{202}$Rn. No excited $0^{+}$ states were observed in the current data set, possibly due to a limited population of second-order processes at the currently-available beam energies. Conclusions: The results are discussed in terms of collectivity and the deformation of both nuclei studied is deduced to be weak, as expected from the low-lying level-energy schemes. Comparisons are also made to state-of-the-art beyond-mean-field model calculations and the magnitude of the transitional quadrupole moments are well reproduced.
A new resonance structure at M = 355 pm 6 pm 9 MeV is observed in the invariant mass spectrum of two gamma-quanta produced in the reaction d + C => gamma + gamma + x at momentum 2.75 GeV/c per nucleon. Preliminary estimates of its width and cross sec tion are Gamma = 41 pm 12 MeV and sigma_{gamma-gamma} = 0.6 mkb. The collected statistics is 2680 pm 310 events of 1.5 10^6 triggered interactions of a total number 3 10^{12} dC-interactions.
There is sparse direct experimental evidence that atomic nuclei can exhibit stable pear shapes arising from strong octupole correlations. In order to investigate the nature of octupole collectivity in radium isotopes, electric octupole ($E3$) matrix elements have been determined for transitions in $^{222,228}$Ra nuclei using the method of sub-barrier, multi-step Coulomb excitation. Beams of the radioactive radium isotopes were provided by the HIE-ISOLDE facility at CERN. The observed pattern of $E$3 matrix elements for different nuclear transitions is explained by describing $^{222}$Ra as pear-shaped with stable octupole deformation, while $^{228}$Ra behaves like an octupole vibrator.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا